
 

 

 

 

 

 

 

 

 

Estimating the Reliability of Composite 
Scores 
 

 

 

 

 

 

 

 

 

 

 

Qingping He 
 
December 2009 
 
Ofqual/10/4703 



 Estimating the Reliability of Composite Scores

 

 

Contents 
 
Summary           3 

1. Introduction          3 

2. Classical Test Theory         5 

 2.1 A General Composite Reliability Formula     6 

2.2 The Wang and Stanley Composite Reliability Formula   7 

 2.3 The Generalized Spearman-Brown Formula    8 

 2.4 The Stratified Coefficient Alpha      8 

 2.5 The Standard Error of Measurement      10 

 2.6 Classical Test Theory Analyses of a Simulated Dataset   10 

3. Generalizability Theory         13 

 3.1 Univariate Generalizability Theory      14 

 3.2 Multivariate Generalizability Theory      16 

 3.3 Generalizability Theory Analyses of the Simulated Dataset  19 

4. Item Response Theory         21 

 4.1 Use of Unidimensional Item Response Theory Models   27 

4.2 Use of Multidimensional Item Response Theory Models   27 

4.3 Calculation of Composite Ability Measures, Standard Error and 

      Composite Reliability        28 

4.4 Item Response Theory Analyses of the Simulated Dataset  29 

5. Concluding Remarks         30 

References           32 

 2



 Estimating the Reliability of Composite Scores

Summary 

The Office of Qualifications and Examinations Regulation (Ofqual) has initiated a 
research programme looking at the reliability of results from national tests, 
examinations and qualifications in England. The aim of the programme is to gather 
evidence to inform Ofqual on developing policy on reliability from a regulatory 
perspective, with a view to improving the quality of the assessment systems further. 
As part of the Ofqual reliability programme, this study, through a review of literature, 
attempts to: look at the different approaches that are employed to form composite 
scores from component or unit scores; investigate the implications of the use of the 
different approaches for the psychometric properties, particularly the reliability, of the 
composite scores; and identify procedures that are commonly used to estimate the 
reliability measure of composite scores. This report summarizes the procedures 
developed for classical test theory (CTT), generalizability theory (G-theory) and item 
response theory (IRT) that are widely used for studying the reliability of composite 
scores that are composed of weighted scores from component tests. The report is 
intended for use as a reference by researchers and test developers working in the 
field of educational measurement. 

 

1. Introduction 

In situations where multiple tests are administered, scores from individual tests are 
frequently combined to produce a composite score. For example, for many GCSE 
and GCE subjects tested in England, candidates are required to take a number of 
related components (or units) for certification at subject level, and scores/grades for 
individual components as well as an overall score/grade for the subject are produced, 
which generally involves assigning weights to individual components (see, for 
example, Cresswell, 1988; Gray and Shaw, 2009).  

Rudner (2001) has identified two approaches involving assigning weights to 
component scores that are commonly deployed to combine scores from component 
tests: the implicit approach and the explicit approach. In the implicit approach, there 
are two ways to combine component scores: either simply add the raw scores from 
the components to obtain the composite score (which is equivalent to weighting 
components by their maximum scores); or use an IRT model to analyse responses 
from all components simultaneously to generate item and person measures. Rudner 
discussed the implications of adding raw component scores for the psychometric 
properties, including reliability and validity, of the composite score. He indicated that 
adding raw scores fails to recognise the differences in the relative importance of 
components and items in relation to the overall composite. In the case of using IRT 
modelling to combine component scores or IRT person ability measures, the items 
from all components can be calibrated simultaneously to estimate item characteristics 
and person ability measures on the composite ability scale. The implicit weights 
assigned to individual items and, therefore, to the components depend on the IRT 
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model used. If the one-parameter logistic model (1PL) or the Rasch model are used, 
the result is equivalent to adding raw scores from the components (see, Lord, 1980). 
However, if a two-parameter logistic model (2PL) is used, the result will be equivalent 
to weighting the components by the discriminating power of the items. If the three-
parameter logistic model (3PL) is used, the effect of weighting the components on 
the composite ability measure is influenced by both the item discrimination parameter 
and the guessing parameter (see Lord, 1980). 

The explicit approach used to combine component scores generally involves 
assigning weights to individual items of components directly, and three explicit 
weighting methods are used. The first method is to weight components by the 
difficulty of the items. This method provides additional reward for mastering 
particularly difficult concepts. However, it also punishes test takers for missing more 
difficult items. The second method is to assign weights to component scores based 
on the reliability measures of the components. In this case, more weight can be given 
to components with higher reliability measures, and less weight to components with 
lower reliability measures. This way, the error associated with the composite score 
will be less than by simply combining raw component scores. It is also possible to 
produce composite scores with maximum reliability by appropriately assigning 
weights to different components. The third method is to weight the components by 
maximising the validity of the composite scores with respect to a pre-specified 
external criterion. In this case, multiple regression of the criterion on the composite 
scores (i.e. the linear combination of the component scores using weights) can also 
be used to derive composite scores that maximize the correlation between the 
external criterion and the composite scores. 

As discussed by Rudner (2001), also see discussions by Govindarajulu (1988), 
Childs et al (2004), Feldt (2004), Rowe (2006), Bobko et al (2007), the way in which 
scores from individual components are combined raises a variety of methodological 
and policy issues, including the investigation and interpretation of the reliability and 
validity of the composite scores. For example, Gill and Bramley (2008) recently used 
a simulation study to investigate the effect of inter-marker reliability of unit scores on 
the grade classification consistency of aggregated scores for an A level subject. 
Although the effects of the reliability, or other psychometric properties of components 
on the reliability, and other properties of the composite scores have been extensively 
studied for a substantial range of assessments in many parts of the world, for 
example, see work by Rudner (2001), Govindarajulu (1988), Childs et al (2004), Feldt 
(2004), Rowe (2006), Bobko et al (2007), such studies have been relatively sparse 
here in England, particularly in the area of public tests and examinations such as 
national curriculum tests, and GCSE and A level examinations. 

Three theories are commonly used to study the reliability of test and examination 
results: CTT, G-theory and IRT (see Lord, 1980; Cronbach et al, 1972, 1995; 
Shavelson and Webb, 1991; MacMillan, 2000; Brennan, 2001a; Bachman, 2004; 
Meadows and Billington, 2005; Kolen and Brennan, 2004; Webb et al, 2007). This 
study briefly reviews and summarizes the procedures developed for the three 
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theories that are widely used to derive reliability measures for composite scores that 
are obtained by combining weighted component scores. A simulated dataset is used 
to illustrate the various procedures and to compare their results. 

 

2. Classical Test Theory 

In CTT, or true score theory, the observed score of an examinee on a test is 
composed of a true score, which reflects the test taker's true ability in the construct 
being measured, and an error score, which reflects the contribution from factors other 
than his/her true ability. In CTT, the reliability of test scores is defined as the 
proportion of observed score variance that is true score variance. Feldt and Brennan 
(1989), Wiliam (2000), Meadows and Billington (2005), Bachman (2004) and 
Johnson and Johnson (2009) discuss the various sources of measurement error and 
the different approaches that are used to derive reliability estimates, including 
internal consistency reliability estimates, the stability (test-retest) reliability estimates, 
the equivalence (parallel forms) reliability estimates and the rater consistency 
reliability estimates. They also discuss ways for improving reliability. Since the 
reliability estimates provide information on a specific set of test scores and cannot be 
used directly to interpret the effect of measurement on test scores for individual test 
takers (Bachman and Palmer, 1996; Bachman, 2004) the standard error of 
measurement, which is defined as the standard deviation of the error scores, is 
introduced for this purpose (Harvill, 1991; Wiliam, 2000; Bachman, 2004; Meadows 
and Billington, 2005; Webb et al, 2007). The standard error of measurement can be 
used to calculate confidence intervals for observed scores or true scores. It can also 
be used to compare scores from individual test takers on the same test. Bachman 
(2004) discusses the implications of the different reliability estimates in terms of the 
sources of measurement error that are accounted for. The CTT approach is to 
identify the sources of error that are of concern to a specific test, and the appropriate 
reliability estimates are used to address these sources. 

Substantial research has been undertaken to study the reliability of composite scores 
using CTT (see Wang and Stanley, 1970; Feldt and Brennan, 1989; Rudner, 2001; 
Webb et al, 2007). Feldt and Brennan (1989) discuss the various procedures and 
mathematical formulations that can be used to estimate the reliability of composite 
scores. These include the generalized Spearman-Brown formula for unit-weighted 
composite scores, the reliability for battery composites, the stratified coefficient alpha 
for tests containing groups of homogeneous items, the reliability of difference scores, 
and the reliability of predicted scores and factor scores. Wang and Stanley (1970) 
developed a formula for calculating the reliability of composite scores that are 
composed of component scores with explicit weights. Some of the most widely used 
procedures used to estimate the reliability of composite scores are briefly explained 
below. In view of the nature of the examinations currently used by the UK 
qualifications system, these procedures would prove to be particularly useful for 
studying the overall qualification level reliability. Johnson and Johnson (2009) provide 
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a comprehensive review of the nature of the examinations that feature in the UK 
assessment system. 

 
2.1 A General Composite Reliability Formula 

Feldt and Brennan (1989) provided the basic statistical theorems about composites 
that are composed of linear combinations of weighted components, which can be 
used to study the reliability of composite scores within the CTT framework. For a 

composite L composed of n weighted components ( , where  is the 

score on component i and  is the assigned weight), assuming that the errors 

between the components are linearly independent, the composite reliability r can be 
expressed as (Feldt and Brennan, 1989; Thissen and Wainer, 2001; Webb et al, 
2007): 
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where: 

  = the reliability of component i; ir

  = the variance of component i; 2

iX

  = the error variance of component i; 2
, iXe

 
ji XX ,  = the covariance between component i and component j; 

  = the correlation between component i and component j; jir ,

  = the variance of the composite scores; 2
c

  = the error variance of the composite scores. 2
,ec

 
Equation (1), therefore, indicates that the reliability of the composite score is a 
function of the weights assigned to the individual components, the reliability 
measures and variances of the component scores, and the correlations between the 
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component scores. Mathematical manipulation of Equation (1) can be carried out by 
altering the weights assigned to individual components, to optimise the reliability of 
the composite score. When an external criterion is pre-specified, the composite L can 
also be correlated to the criterion and the correlation can be maximised to obtain 
optimum weights. Procedures involved in using Equation (1) for calculating the 
reliability of composite scores include: 

 Estimating the reliability of individual components; 
 Calculating the variance of individual components; 
 Calculating the correlation coefficients between components; 
 Assigning weights to individual components to form the composite; 
 Using Equation (1) to calculate the reliability of the composite score, and, if 

required, manipulating Equation (1) to optimise the reliability of the composite 
score to determine the weights for individual components; 

 Calculating the standard error of measurement of the composite score. 

 
2.2 The Wang and Stanley Composite Reliability Formula 

When the scores from each component are standardized to have the same standard 
deviation, Equation (1) reduces to the Wang and Stanley composite reliability 
formula, which can be expressed as (Wang and Stanley, 1970; Thissen and Wainer, 
2001; Feldt, 2004): 
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In the case of two components, the reliability of the composite score can be 
expressed as: 
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As suggested by Rudner (2001), in the case of two components the lowest possible 
value for the composite reliability is the reliability of the less reliable component. If the 
two components are correlated, the composite reliability can be higher than the 
reliability of either component. If the component reliabilities are the same, the 
composite reliability will have a maximum value of )1/()( 2,12,11 rrr   when the ratio of 

the weights between the two components is 1.0. 
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Rudner (2001) used Equation (3) to study the effect of component weights on the 
reliability and validity of a composite composed of two components. Both the 
composite reliability and validity are functions of the component weights. His study 
suggested that the lowest possible value for the composite validity (defined as the 
correlation between the composite score and an external criterion variable) is the 
validity of the less valid component. The composite validity can be higher than the 
validity of either component. When the component validities and weights are the 
same, the composite has maximum validity. He also showed that if the two 
components are not highly correlated, composite validity can increase when 
composite reliability decreases. This is in contrast to the traditional view that the 
square root of the reliability places an upper limit on validity. It should be noted, 
however, that Rudner was concerned here with composite score validity as predictive 
validity. 

 
2.3 The Generalized Spearman-Brown Formula 

The generalized Spearman-Brown formula is a special case of Equation (1), where 
the components are parallel test units with an equal weight of 1.0 for all units. The 
reliability of the composite score in this case can be expressed as: 
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where  is the reliability of a unit test. When the reliability of the composite score is 

pre-specified and the reliability of the parallel units is known, Equation (4) can be 
used to calculate the test length required. The generalized Spearman-Brown formula 
is frequently used in the early experimental stages of test development to explore the 
effect of test length and item types on the reliability of the final test (see Feldt and 
Brennan, 1989). 

1r

 
2.4 The Stratified Coefficient Alpha 

As indicated by Feldt and Brennan (1989), even for a single test the items in the test 
are rarely homogenous in terms of measuring the construct under consideration. It is 
frequently the case that items in a test are grouped to measure slightly different 
dimensions of a content domain. Coefficient alpha (Cronbach’s alpha; a measure of 
the internal consistency reliability) is one of the most frequently used coefficients for 
measuring the reliability of a single administered test. Lord and Novick (1968) 
showed that the items in the test must be tau-equivalent for coefficient alpha to be an 
unbiased estimator of the reliability (when items in a test are tau-equivalent, the 
difference between the true scores for any pair of items is a constant and the items 
have equal true score variance; though they may have unequal error score 
variances). This will seldom be met in practice as it requires equal discriminating 
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power for all test components and whole-test unidimensionality, which is represented 
by equal factor loadings for all components under the one-factor factor analytic model 
(McDonald, 1999; Kamata et al, 2003). Therefore, a test can generally be assumed 
to be composed of stratified layers of items, with items in each layer being assumed 
to be unidimensional. The reliability of the composite score can be calculated based 
on the reliabilities of the strata, each of which is treated as a single subtest. The 
stratified coefficient alpha, which is also a special case of Equation (1), can be 
expressed as (Feldt and Brennan, 1989): 
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where: 

  = the reliability of the composite scores; ,STRATr

  = the reliability of stratum i; ir

  = the variance of stratum i; 2
i

  = the variance of the composite scores. 2
c

 
Although the procedure outlined above is for a single test containing groups of 
homogeneous items, it can also be used to calculate the reliability of a composite 
score that is composed of individual tests administered separately, if the reliability 
measures of the individual tests can be estimated and each component is given the 
same weight. Procedures involved in using Equation (5) for calculating the reliability 
of the composite score include: 

 Estimating the reliability measures of individual components or strata; 
 Calculating the variances of the component and composite scores; 
 Using Equation (5) to calculate the reliability of the composite score; 
 Calculating the standard error of measurement for the composite scores. 
 
Stratified coefficient alpha has been extensively used to study the reliability of scores 
from tests composed of heterogeneous items. For example, using a simulation study, 
Osburn (2000) showed that stratified alpha and maximal reliability provide the most 
consistently accurate estimates of composite reliability when components measuring 
different factors are grouped into subsets. Maximal reliability is a reliability measure 
derived from the basis of the assumption that all items within a subtest or group 
measuring a single dimension have the same reliability and variance (Li et al, 1996). 
Kamata et al (2003) found that when a test is composed of multiple unidimensional 
scales, the composite of the entire test items is not likely to meet the essential tau-
equivalent condition, and coefficient alpha is likely to underestimate the true reliability 
of the test. They compared results from three alternative methods (stratified alpha, 
maximal reliability and multidimensional omega) for five different multidimensional 
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factor-structure conditions. Multidimensional omega is a reliability measure derived 
from the basis of application of a one-factor factor analytic model to model observed 
scores (McDonald, 1999). Their results indicated that the three methods estimated 
the true reliability much better than coefficient alpha for all conditions. Their results 
also suggested that stratified alpha generally performed better than the other 
methods. Ray (2007) examined the relationship between stratified alpha and the 
reliability of a test composed of interrelated non-homogeneous items. The study 
demonstrated that when errors of measurement were positively correlated and the 
strata were tau-equivalent, stratified alpha would overestimate the true reliability. 
Kreiter et al (2004) and Kreiter and Bergus (2007) studied the psychometric 
characteristics of the composite score of two clinical performance assessments. Their 
results showed that the two assessments were statistically significantly correlated. 
They investigated how the reliability of the composite score was affected by the ratio 
of the weights assigned to the two assessments. Based on the results obtained, and 
taking into consideration logical validity and practicalities such as testing times, they 
suggested ways to combine component scores for course grading. 

 
2.5 The Standard Error of Measurement 

The standard error of measurement  of the composite score for all of the 

above cases can be calculated using the following equation: 

cCTTSEM ,

 
 ccCTTcCTT rSEM ,, 1         (6) 

 
where  is the reliability of the composite calculated using one of the methods 

discussed above, and 
cCTTr ,

c  is the standard deviation of the composite scores. 

 
2.6 Classical Test Theory Analyses of a Simulated Dataset 

To illustrate how the different procedures outlined above can be used to calculate the 
reliability of composite scores and to compare their results, item response patterns 
on two tests for 2,000 persons were generated using the WinGen2 IRT simulation 
software, which implements the Partial Credit Model (PCM) developed by Masters 
(1982) and can be accessed at www.umass.edu/remp/software/wingen. The ability of 
the population was assumed to be normally distributed with a mean of 0.0 logits and 
a standard deviation of 1.0 logits for the first test (Test 1). Logits is the unit used for 
person ability and item difficulty measures in IRT modelling (Wright and Stone, 1979). 
Test 1 contained 40 dichotomous items with a uniform difficulty distribution (with 
values of difficulty ranging from –3.50 to +3.50 logits and a mean of 0.0 logits). Test 2 
contained 30 items, each carrying a maximum of two marks, also with values of 
difficulty ranging from –3.50 to +3.50 logits and a mean of 0.0 logits. To make Test 2 
measure a slightly different ability dimension from that measured by Test 1, a small 
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random variation was added to the ability distribution of the population for Test 1, to 
produce the ability distribution for Test 2. This resulted in a correlation of 0.86 
between the ability distributions for the two tests. Figures 1 and 2 show the raw score 
frequency distributions, and Table 1 lists some of the basic statistics and the internal 
consistency reliability measures (Cronbach's alpha) for the two tests.  
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Figure 1 Frequency distribution of raw scores for Test 1. 
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Figure 2 Frequency distribution of raw scores for Test 2. 
 
 
 
 
 
 

 11



 Estimating the Reliability of Composite Scores

 
Table 1 Basic statistics of Test 1 and Test 2. 
 

 Test 1 Test 2 

Number of items 40 30 

Full mark 40 60 

Mean score 19.00 26.10 

Standard deviation ( i ) 5.58 10.40 

Cronbach's alpha ( ) ir 0.83 0.91 

Correlation between test scores ( ) 2,1r 0.77 

Number of components ( ) n 2 

 
 
Table 2 lists the various reliability coefficients for the composite scores of the two 
tests, calculated using the procedures discussed previously and the statistics 
presented in Table 1. Values of Cronbach’s alpha were used as the reliability 
measures for the two tests. The generalized Spearman-Brown coefficient was not 
calculated, as the two tests are not parallel. In the case of the general composite 
reliability formula, as shown in Equation (1), and the Wang and Stanley formula, the 
composite reliability was calculated for a series of weights assigned to the two tests. 
Since the two tests are highly correlated, the reliability of the composite can be 
higher than the reliability of the individual tests. When the weights for the two tests 
are the same (equal weights), the composite reliability measures estimated using the 
general composite reliability formula and the Wang and Stanley formula are the same 
as that estimated using the stratified coefficient alpha. This is expected, as the 
stratified coefficient alpha implies a weight ratio of 1.0 for the two tests. When the raw 
scores from the two tests are added together (equal weights for the two tests), 
Cronbach’s alpha for the combined scores was estimated to be 0.93, which is the 
same as the composite reliability measures estimated using the stratified coefficient 
alpha, the general composite reliability formula and the Wang and Stanley formula. 

 
Table 2 Values of the various reliability coefficients for the composite scores of the two tests. 
 

Reliability coefficient Stratified coefficient alpha 

1w  2w  General formula Wang and Stanley formula 

0.10 0.90 0.92 0.92 

0.25 0.75 0.92 0.93 

0.50 0.50 0.93 0.93 

0.75 0.25 0.90 0.89 

0.90 0.10 0.87 0.86 

 

 

 

 

0.93 

 

 
As can be seen from the above analysis, the reliability measures estimated using the 
different coefficients are similar for the simulated dataset. When individual 
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components are unidimensional, the methods outlined above will produce similar 
reliability measures. However, if individual components measure multidimensional 
constructs, then the reliability measures for each component may be estimated using 
the stratified coefficient alpha, which can then be used to estimate the reliability 
measure of the composite score using one of the above procedures. The generalized 
Spearman-Brown formula is particularly useful in the early experimental stages of 
test development to explore the effect of test length and item types on the reliability 
of the final test. The general composite reliability formula and the Wang and Stanley 
formula are useful for studying the effect of component weighting on the reliability of 
composite scores. 

 

3. Generalizability Theory 

As indicated by Feldt and Brennan (1989), Bachman (2004) and Webb et al (2007), 
there are important limitations in using CTT to estimate reliability. In particular, in CTT 
a specific reliability estimate for a test only addresses one source of measurement 
error and, therefore, cannot be used to assess the effects of multiple sources. CTT 
also treats error as random and cannot be used to distinguish systematic 
measurement error from random measurement error. Further, the reliability estimates 
and the standard error of measurement are assumed to be the same for all test 
scores. In real situations, the assumptions of CTT are rarely met. 

G-theory has been developed to address some of the problems encountered in CTT 
(Cronbach et al, 1972, 1995; Feldt and Brennan, 1989; Brennan, 2001a; Bachman, 
2004; Webb et al, 2007; Johnson and Johnson, 2009). G-theory is a measurement 
model that can be used to study the relative effects of multiple sources of 
measurement error on test scores. An important feature of G-theory is that the 
relative contributions from individual sources of measurement error to the overall 
error variance can be investigated, including the interaction between the sources. An 
important application of G-theory is that the model can be used to design a test 
suitable for a specific purpose with minimum measurement error, through a Decision-
study (D-study). As indicated by Bachman (2004), CTT approaches to estimating 
reliability can be treated as special cases of G-theory. Further, G-theory extends CTT 
in other ways. 

Univariate G-theory can be used to conduct simultaneous analysis of multiple 
sources of error variance and score dependability for a single test (score 
dependability or generalizability refers to the extent to which scores on a given 
measure would be replicated under other equivalent measurement conditions). 
Multivariate G-theory has been developed to address the reliability of measurements 
and other psychometric properties of assessments, where multiple scores 
representing performance on different constructs are used to produce a composite 
score (Shavelson and Webb, 1981; Brennan, 2001a; Webb et al, 2007). Multivariate 
G-theory decomposes both observed variance and covariance into components. 
Webb et al (2007) have suggested various applications of G-theory, including 
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estimating the reliability of difference scores, observable correlations, universe 
scores (defined as the average score based on all admissible observations of the 
universe of interest, which is similar to the true score in CTT) and error correlations. It 
can also be used to estimate the reliability of a profile of scores using multiple 
regression of universe scores on the observed scores in the profile. 

 
3.1 Univariate Generalizability Theory 

In G-theory, the test score that a test taker obtained on a test is conceived of as a 
sample from a universe of all possible scores that are admissible. Each characteristic 
of the measurement situation (e.g. test form, test item, rater, test occasion) is termed 
a facet (Webb et al, 2007). Facets are sources of error in test scores. Test takers are 
objects of measurement and are not a facet, as they are not a source of error. In the 
case of the fully crossed person-item one-facet G-study design ip  (i.e. all persons 

answer all items in the test, with ‘items’ the only facet), the observed score  of 

person p on item i can be decomposed as (Webb et al, 2007): 

piX

 
 )()()(   ippiippi XX     (7) 

 
where p  is the universe score defined as the expected value (E) of a person's 

observed score over the universe of items, i  is the population mean of item i, and 

  is the mean over both the population of persons and the universe of items: 

 
 )( piip XE  

 )( pipi XE           (8) 

 )( piip XEE  

 
The variance of the set of observed scores, , can be 

decomposed as: 

22 )(   piipX XEE
pi

 
         (9) 2

,
222

epiipX pi
 

 
where  is universe score variance,  is item score variance, and  is the 

residual variance component: 

2
p 2

t 2
,epi

 
  22 )(   ppp E

 14



 Estimating the Reliability of Composite Scores

          (10) 22 )(   iii E

  22
, )(   ippiipepi XEE

 
The residual variance component  reflects the effect of person-item interaction 

and other unexplained random error and can be estimated using the analysis of 
variance procedures based on the observed scores for a 

2
,epi

ip  design for a test 

containing  items. in

In G-theory, a G-study is used to obtain estimates of variance components 
associated with a universe of admissible observations. A D-study, on the other hand, 
specifies a universe for generalization and focuses on the estimation and 
interpretation of variance components for decision making. In a D-study, decisions 
are based on the observed mean score  over a sample of  items for a fully 

crossed person-item one-facet design 
pIX

Ip
in

 . When a relative (norm-referenced) 

decision is made (e.g. the ordering of persons), the variance of error is 
. The standard deviation of error scores (or standard error of 

measurement)  is: 
iepiepI n /2

,
2

,
2 

SEM meanG ,

 

 epi
i

epImeanG n
SEM ,,,

1  
        (11) 

 
In D-study, the mean score metric is used, rather than the total score metric. If the 
total test score scale is to be used, the standard error of measurement  

associated with total test scores can be calculated as: 
GSEM

 
 epiiimeanGiG nnSEMnSEM ,,         (12) 

 
The generalizability coefficient , which is analogous to the reliability coefficient in 

CTT, can be defined as: 

2E
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     (13) 

 
2E  can be estimated based on sample estimates of the relevant parameters from 

the G-study. 
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Brennan (2001a) and Webb et al (2007) have provided detailed mathematical 
derivations for estimating the generalizability coefficient of tests involving multiple 
sources of error. Recently, Johnson and Johnson (2009) have explored the potential 
for using G-theory to study the reliability of assessment results and the contribution to 
measurement errors from various sources, including item-related, marker-related and 
other sources, in the context of the examinations commonly used by the UK general 
qualification systems. They have also discussed how the absolute standard error of 
measurement or absolute generalizability coefficients provided by G-theory could be 
used to investigate the reliability of competence-based assessments such as those 
used by the UK vocational and occupational qualifications. Given unavoidable 
operational and financial constraints, a realistic G-theory study design would need to 
take into consideration the number of major facets to be investigated and the size of 
the dataset needed to produce stable estimates for component variances. 

Procedures for using univariate generalizability analysis to estimate the 
generalizability of the composite include: 

 Assigning weights to components (if weights are 1.0, then all test components 
are equally weighted); 

 Analysing all weighted (or unweighted) components together using G-theory 
analysis software; 

 The generalizability coefficient thus produced will be for the composite. 

Brennan (2001a) and Webb et al (2007) have discussed the various approaches that 
can be used for estimating the reliability of composite scores involving multiple 
facets. 

 
3.2 Multivariate Generalizability Theory 

While univariate G-theory can be used to estimate variance components and score 
dependability for the overall test, multivariate G-theory can be used to investigate 
universe score correlations among test components (or component tests) and the 
conditions of their combination to produce maximum reliability for the composite 
score (Brennan, 2001a; Lee, 2006; Webb et al, 2007). Information about the 
correlation between test components is important to verify the suitability of combining 
test components to form a composite (Lee, 2006). 

To extend the univariate one-facet G-study design ip  to multivariate G-study for a 

test containing two components (or subtests), the observed score of a person on an 
item in the two components can be denoted as and , and the variances 

and covariance of the observed scores across the population and the universe of 
items can be decomposed as (Brennan, 2001a; Webb et al., 2007): 

)piX(1 )(2 piX
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In Equation (14), the term pp 2,1  is the covariance between the universe scores for 

component 1 and component 2, and ),(2),,(1 epiepi  is the covariance of person-item 

interaction between the two components. 

When designing the D-study, the universe score of the composite for a test taker can 
be conceptualised as the combination of the weighted component universe scores 
(Brennan, 2001a; Clauser et al., 2006). In the case where there are n components 
(n=2 for the above example), the composite universe score cp  can be expressed as: 

 

          (15) 



n

pcp w
1

 

 
where  is the weight of component w  , and p  is its universe score. The composite 

universe score variance takes the following form: 
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where  when 2

, ppp      , and pppp   ,,   . In the case of relative decision 

making, the distribution of the error scores associated with the average of the 
weighted scores of persons on the items in the overall test will have a variance  

and a standard deviation (or standard error) : 

2
,c

cG ,SEM

 

 





 


 






n n

epIepIccG

n n

epIepIc

wwSEM

ww

1 1
),(),,(,,

1 1
),(),,(

2
,

 


 





      (17) 

 

 17



 Estimating the Reliability of Composite Scores

where  when 2
),(),(),,( epIepIepI      , and ),(),,(),(),,( epIepIepIepI     . The 

composite generalizability coefficient is defined as (Brennan, 2001a; Lee, 2005, 
2006; Clauser et al, 2006): 
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Equation (18), or its equivalent, can be used to obtain weights for the components or 
subtests that maximize the reliability of the composite universe score (Joe and 
Woodward, 1976; Brennan, 2001a; Webb et al, 2007). 

Procedures for using multivariate generalizability analysis to estimate the 
generalizability coefficient of the composite include: 

 Assigning weights to individual components to form a composite; 
 Analysing all components together using multivariate G-theory analysis 

software such as mGENOVA. The total variance is decomposed into 
component variances and the covariances between components. 
Generalizability coefficients for individual components, the variance and 
generalizability coefficients of the composite can all be estimated; 

 If required, maximizing the composite generalizability to derive weights for 
individual components. 

There are only limited software systems available for conducting G-theory analysis. 
These include GENOVA and mGENOVA, produced by Brennan and co-workers, 
which can be accessed at: http://www.uiowa.edu/~casma/computer_programs.htm 
(Brennan, 2001a,b). Mushquash and O'Connor (2006) produced some SPSS Syntax 
for univariate analysis which can be accessed at: 
http://people.ok.ubc.ca/brioconn/gtheory/G1.sps. 

Both univariate G-theory and multivariate G-theory have been widely used in 
educational and other research. For example, Hays et al (1995) were able to explore 
the effect of varying subtest lengths on the reliability of individual subtests and the 
composite (which in this case represented a combination of subtest scores weighted 
by the number of items in each subtest) using a multivariate D-study. They were, 
therefore, able to form a composite, to produce reliable information about the 
performance of the candidates by combining the subtests, each of which provided 
information about a different aspect of competence. Burch et al (2008) have also 
used univariate and multivariate generalizability to determine the component and 
composite reliability measures of the Fellowship Examination of the College of 
Physicians of South Africa. D-studies were used to identify strategies for improving 
the composition of the examination. 
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Lee (2005, 2006) has studied a multitask speaking measure consisting of both 
integrated and independent tasks, which was expected to be an important component 
of a new version of the Test of English as Foreign Language (TOEFL). The author 
considered two critical issues concerning score dependability of the new speaking 
measure: how much score dependability would be impacted, firstly, by combining 

scores on different task types into a composite score and, secondly by rating each 
task only once. The author used G-theory procedures to examine the impact of the 
numbers of tasks and raters per speech sample, and subsection lengths on the 
dependability of the speaking scores. Both univariate and multivariate G-theory 
analyses were conducted. Results from the univariate analyses indicated that it would 
be more efficient in maximizing score dependability to increase the number of tasks 
rather than the number of ratings per speech sample. D-studies involving variation in 
the number of tasks for individual subsections revealed that the universe (or true) 
scores among the task-type subsections were very highly correlated, and that slightly 
larger gains in composite score reliability would result from increasing the number of 
listening - speaking tasks for the fixed section lengths. 

O’Neill et al (2009) have estimated the generalizability of a composite used to select 
candidates for a chiropractic programme, based on assessments consisting of 
application form information, a written motivational essay, a common knowledge test 
and an admission interview. Multivariate D-studies that involve assigning different 
weights to the individual components were conducted to explore the influence of 
component weighting on composite generalizability and, therefore to obtain optimum 
weights that maximise the composite generalizability. Wass et al (2001) have used 
multivariate G-theory to estimate the composite reliability of an undergraduate clinical 
examination composed of several components, and the effect of item weighting and 
test length on this. 

 
3.3 Generalizability Theory Analyses of the Simulated Dataset 

To illustrate how univariate and multivariate generalizability analyses can be used to 
estimate generalizability (reliability) coefficients of composite scores, the simulated 
dataset was analysed using G-theory (assuming a fully crossed ip  design, with 

items as the only facet). In the case of univariate generalizability analysis, the SPSS 
syntax produced by Mushquash and O'Connor (2006) was used. Separate univariate 
G-theory analyses on the two tests produced values of 0.83 and 0.91, respectively, 
for the generalizability coefficients from Equations (10) and (13), which are the same 
as the Cronbach's alpha values produced from CTT analysis (see Table 3). Again, 
sets of different weights were assigned to the two tests to form composite responses, 
which were then analysed again using univariate G-theory. The values for the 
variances and generalizability coefficients are listed in Table 4. 
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Table 3 Values of the generalizability coefficients for the two tests. 
 

 Test 1 Test 2 

in  (Number of items) 40 30 

2
p  0.016 0.109 

2
,epi  0.133 0.310 

2E  0.83 0.91 

 
 

Table 4 Values of the variances and generalizability coefficients for the composite using 

univariate analysis ( = 70). in
 

Component weight 

1w  2w  

2
p  2

,epi  2E  

0.10 0.90 0.018 0.129 0.91 

0.25 0.75 0.015 0.092 0.92 

0.50 0.50 0.011 0.055 0.93 

0.75 0.25 0.008 0.051 0.91 

0.90 0.10 0.006 0.062 0.87 
 
 
In the case of multivariate generalizability analysis, the software mGENOVA, 
developed by Brennan and co-workers, was used. The two tests were treated as two 
variables, each with a fully crossed ip  design. In mGENOVA, weights can be pre-

specified in the D-study. Table 5 shows the generalizability coefficients obtained from 
the multivariate G-theory analysis for the composite when different weights are 
assigned to the two tests. As can be seen from Tables 4 and 5, both univariate and 
multivariate analyses produced very similar results, which are also close to those 
generated from the CTT analyses. 

 
Table 5 Values of the variances and covariances and the generalizability coefficients for the 

composite using multivariate analysis. 
 

Variances and covariances Component weight 

2
1p  0.016 

1w  2w  

2E  

2
2 p  0.109 0.10 0.90 0.92 

pp 2,1  0.000 0.25 0.75 0.93 

2
),(1 epi  0.133 0.50 0.50 0.94 

2
),(2 epi  0.310 0.75 0.25 0.92 

),(2),,(1 epiepi  0.000 0.90 0.10 0.88 
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4. Item Response Theory 

In addition to the limitations discussed previously, there are further limitations 
associated with CTT (see Lord, 1980; Hambleton and Swaminathan, 1983; 
Hambleton et al, 1991; Bachman, 2004; Bond and Fox, 2007). For example, item and 
test statistics such as item difficulty and discrimination power, and reliability are 
dependent on the examinee sample from which they were derived. CTT assumes 
equal variance of measurement errors for all examinees, which is not always the 
case. G-theory suffers similar problems. IRT seems to overcome some of these 
limitations in situations where test data fits the model. There are two types of IRT 
model: unidimensional IRT (UIRT) models, for items measuring a single ability in 
common; and multidimensional IRT (MIRT) models, for items measuring multiple 
abilities (see Reckase, 1985, 1997; Ackerman, 1992, 1994, 1996; Adams and 
Wilson, 1996; Adams et al, 1997; Embretson, 1996, 1997; Embretson and Reise, 
2000; Reckase and Martineau, 2004); Sijtsma and Junker, 2006; Wu and Adams, 
2006). IRT models have been widely used to study error of measurement for both 
items and test takers (see Lord, 1980; Hambleton et al, 1991). In the case of ability 
measures for examinees, the standard error of measurement at a specific ability level 
will be inversely proportional to the square root of the test information, and is a 
function of the ability measure. 

A variety of IRT models have been used in educational assessment research, 
including the unidimensional 1PL (the Rasch model), 2PL and 3PL models for 
analysing dichotomous items, and the PCM and the Rating Scale Model (RSM) for 
analysing polytomous items (see Rasch, 1960; Andrich, 1978; Wright and Stone, 
1979; Lord, 1980; Masters, 1982; Wright and Masters, 1982). The 3PL model for 
dichotomous items can be expressed as (see Lord, 1980): 
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        (19) 

 
where: 

   = person ability in logits; 
 D = 1.7; 
 )(P  = the probability of a person with an ability   to answer the item 

              correctly; 
 a = the item discrimination parameter; 
 b = the item difficulty parameter; 
 c = the item guessing parameter. 

 
Equation (19) indicates that the probability of an examinee answering an item 
correctly increases with an increase in his/her ability or a decrease in item difficulty. 
When c = 0, it becomes the two-parameter logistic model. When a = 1 and c = 0, 
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Equation (19) reduces to the Rasch model. For the Rasch model, when the item 
difficulty is close to the person ability, the test taker will have a 50 per cent chance of 
answering the item correctly. 

The PCM for polytomous items, developed by Masters (1982), can be expressed as 
(Masters, 1982, 1984, 1999; Wright and Masters, 1982; Masters and Evans, 1986): 
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where: 

 
 ),( xP   = the probability of a person with ability   scoring x on a 

                 polytomous item with a maximum score m; 
 k  = the kth threshold location of the item on the latent trait continuum, which 

          is also referred to as the item step difficulty; 
 m = the maximum score of the item. 

 
Two important assumptions are required under these UIRT models: unidimensionality 
and local independence. Unidimensionality requires that one ability or a single latent 
variable is being measured by the test. Local independence requires that test takers’ 
responses to any question in the test are statistically independent when the ability 
influencing their performance on the whole test is held constant. In reality, these 
assumptions are rarely met. But, as indicated by Hambleton et al (1991), as long as a 
coherent scale can be constructed by the items, strict unidimensionality will not be 
needed because IRT analysis is relatively robust to violations of the unidimensionality 
assumption. The degree to which the model assumptions are met can be evaluated 
by model fit statistics, which are provided by most IRT analysis software systems. 

Use of the 2PL and 3PL models can create problems when interpreting results. For 
example, test takers with lower raw scores may have an estimated ability higher than 
those with higher raw scores. In view of the wide use of polytomous items in 
achievement tests in England, the PCM looks particularly promising in terms of 
providing useful information that can be used to improve the assessment process. 
However, there are a number of limitations associated with this model under certain 
circumstances. For example, while the Rasch model maintains a monotonic 
relationship between person/item measures and total test/item scores, the PCM only 
maintains a monotonic relationship between person measures and test scores (i.e. 
person ability is a monotonic function of raw scores, see Bertoli-Barsotti, 2003, 
2005). This can create difficulties when interpreting PCM-estimated item measures, 
because some items with higher percentage scores (more persons answered the 
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items correctly) may appear to be more difficult than items with lower percentage 
scores (fewer persons answered the items correctly). 

Adams et al (1997; also see Wu et al, 2007) have developed an IRT model called the 
Unidimensional Random Coefficients Multinomial Logit Model (URCMLM) for both 
dichotomous and polytomous items: 
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where: 

 )|1( jXP  = the probability of a person with ability   to have a response in  

     category j (with a category response value of ); 1jX

 K = the total number of categories of the item; 
  = the response score representing the performance level of an observed  jb

         response in category j; 

   = the item parameter vector (in the form of a matrix with the number of  

         elements equal to the number of item parameters); 

 a  = the design vector (matrix) reflecting the nature of the model (for example 
         dichotomous or polytomous, 1PL or PCM); 

 a  = the transpose of a . 
 
The URCMLM includes a number of IRT models such as the Rasch model, the PCM, 
the Rating Scale Model (Andrich, 1978) and a few other models. 

An important concept in IRT modelling is the item information function. In situations 
where items in a test are composed of dichotomous items, the information function 

)(iI  of item i can be defined as (Hambleton and Swaminathan, 1983): 
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The test information function is defined as the sum of the item information over all 
items in the test: 

 

          (23) 



in

i
iII

1

)()( 

 23



 Estimating the Reliability of Composite Scores

 
where  is the number of items in the test. For polytomous items, Wright and 

Masters (1982), Masters (1982), and Embretson and Reise (2000) have provided 
detailed discussions on the formulation of item and test information functions and 
their applications. The standard error (standard deviation) of a person ability measure 
is inversely proportional to the test information: 

in
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SEM IRTIRT          (24) 

 
Since the test information is a function of person ability, the standard error of person 
ability is also a function of ability. This is different from CTT, where the standard error 
of measurement is generally assumed to be the same at all score points. Johnson 
and Johnson (2009, and the references cited therein) have contrasted IRT-based 
measurement error and CTT-based measurement error and argued that in the case 
of IRT, the item parameters are predetermined and fixed, and, therefore, the 
measurement error does not reflect the effect of external factors such as content 
sampling. However, since IRT-based measurement error is a function of the items in 
a test, it could be interpreted as a reflection of the effect of sampling of items from the 
universe of items in estimating person reliability measures (assuming that the items 
are accurately marked). Rudner (2005) has interpreted the IRT-based measurement 
error as the standard deviation of the observed scores (ability) about the true score 
(ability) and has used it to calculate the expected classification accuracy. Recently, 
many-facet Rasch models have been used to study the consistency of rating 
between raters (see Linacre, 1994; Lumley and McNamara, 1995; Smith and 
Kulikowich, 2004). The person ability measurement error could be interpreted as 
reflecting the combined contribution from errors related to both items and raters in 
this case. As indicated by Webb et al (2007), in the case of IRT modelling, it is not 
possible to quantify the relative contributions of different error sources to 
measurement error, so that this information can be used, as in G-theory, to optimise 
the design of a future measurement using different samples of items and raters. 
Recently, researchers have attempted to bring together the sampling model of G-
theory with IRT models (Kolen and Harris, 1987; Briggs and Wilson, 2004; Webb et 
al, 2007). 

If the Rasch model (or any other IRT model) is used, the reliability  can be 

defined as (Linacre,1997): 
IRTR
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where  is the average of the person measure error variance, and  is the 

observed person measure variance. 

2
,avgIRT 2

,IRTO

When a test is designed to measure more than one latent variable, which is 
frequently the case given that a test needs to meet certain validity criteria such as 
required content or curriculum coverage, MIRT models can be used (Reckase, 1985, 
1997; Embretson, 2000; Ackerman, 1994, 1996; Reckase et al, 1988; Yao and 
Schwarz, 2006). MIRT models are particularly useful for diagnostic studies to 
investigate how persons interact with individual items (Walker and Beretvas, 2003; 
Wu and Adams, 2006; Hartig and Höhler, 2008). The widely used compensatory 
multidimensional 3PL model can be viewed as an extension to the unidimensional 
3PL model, and can be expressed as: 
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In a compensatory MIRT model, a test taker's low ability in one dimension can be 
compensated by high ability in other dimensions, when answering questions. 
Although the definitions of the variables in Equation (26) are similar to those for 

Equation (19), both the item discrimination parameter a and the latent trait   are 
vectors (both have the same number of elements, which is the number of ability 

dimensions). The transpose of a  is a . Similar to the unidimensional PCM, the 
monotonic relationship between a person measure in a particular dimension and the 
total test score cannot be maintained for MIRT models such as those represented by 
Equation (26) (Hooker et al, 2009). This can cause counterintuitive situations where 
higher ability is associated with lower raw test scores. 

The URCMLM discussed previously has also been extended to the Multidimensional 
Random Coefficients Multinomial Logit Model (MRCMLM), to accommodate the 
multidimensionality of items in a test (Wu et al, 2007): 
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where   is the latent trait vector, jb  is the category score vector for category j, jb  is 

the transpose of jb , and ja  is the transpose of ja . 

Wang (1995) and Adams et al (1997) have introduced the concepts of between-item 
multidimensionality and within-item multidimensionality in MIRT modelling, to assist in 
the discussion of different types of multidimensional models and tests (Wu et al, 
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2007). In the case of between-item multidimensionality, each item in a test measures 
just one distinct ability dimension, and items measuring the same latent dimension 
are grouped to form a subscale (for example, a mathematics test may contain some 
items measuring geometry ability and some items measuring algebra ability). In this 
case, the actual MIRT model reduces to a combination of UIRT models for individual 
item groups. In the case of within-item multidimensionality, an item may measure 
more than one latent dimension. Between-item multidimensionality is easier to deal 
with, mathematically and computationally, than within-item multidimensionality. 

Both UIRT and MIRT models have been used to analyse tests and items. For 
example, Luecht and Miller (1992) presented and evaluated a two-stage process that 
considers the multidimensionality of tests under the framework of UIRT. They first 
clustered the items in a multidimensional latent space with respect to their direction 
of maximum discrimination. These item clusters were then calibrated separately 
using a UIRT model, to provide item parameter and trait estimates for composite 
traits in the context of the multidimensional trait space. Similarly, Childs et al (2004) 
have presented an approach to calculating the standard errors of weighted scores 
while maintaining a link to the IRT score metric. They used the unidimensional 3PL 
model for dichotomous items and the Graded Response model (GR model, see 
Samejima, 1969) for structured response questions, to calibrate a mathematics test 
containing three item types: multiple choice questions; short-answer free-response 
questions; and extended constructed-response questions. They then grouped the 
items as three subtests, according to their item types, and recalculated the 
corresponding IRT ability measures and raw scores. Different weights were then 
assigned to the subtests, and a composite ability score was formed as a linear 
combination of the subtest ability measures. The composite ability measures were 
then correlated to the overall test scores and the original IRT ability measures, to 
study the effects of subtest weighting.  

Hartig and Höhler (2008) have recognised the importance of using MIRT in modelling 
performance in complex domains, simultaneously taking into account multiple basic 
abilities. They illustrated the relationship between a two-dimensional IRT model with 
between-item multidimensionality and a nested-factor model with within-item 
multidimensionality, and the different substantive meanings of the ability dimensions 
in the two models. They applied the two models to empirical data from a large-scale 
assessment of reading and listening comprehension in a foreign language 
assessment. In the between-item model, performance in the reading and listening 
items was modelled by two separate dimensions. In the within-item model, one 
dimension represented the abilities common to both tests, and a second dimension 
represented abilities specific to listening comprehension. Similarly, Wu and Adams 
(2006) have examined students’ responses to mathematics problem-solving tasks 
and applied a general MIRT model at the response category level. They used IRT 
modelling to identify cognitive processes and to extract additional information. They  
have demonstrated that MIRT models can be powerful tools for extracting information 
from responses from a limited number of items, by looking at the within-item 
multidimensionality. Through the analysis, they were able to understand how 
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students interacted with the items and how the items were linked together. They 
were, therefore, able to construct problem-solving profiles for students. 

 
4.1 Use of Unidimensional Item Response Theory Models 

In the case of using UIRT models to produce composite ability measures and 
composite reliability, procedures include: 

 Selecting a UIRT model; 
 Selecting an appropriate person sample for item calibration; 
 Calibrating all items from all components simultaneously, to obtain the 

composite person measures and measurement errors using IRT analysis 
software (assuming the components measure the same latent trait), and: 
 Evaluating the degree to which the model assumptions are met; 
 Calculating the reliability of the composite ability; 

 Or calibrating the items separately for individual components, using an IRT 
analysis software, to obtain person measures on the components (the 
components may measure different ability dimensions), and: 
 Evaluating the degree to which the model assumptions are met; 
 Assigning weights to components and calculate the composite person 

measure as the linear combination of the component measures (see 
below); 

 Calculating the error for the composite person measure; 
 Calculating the reliability of the composite ability. 

 
4.2 Use of Multidimensional Item Response Theory Models  

In the case of using MIRT models to produce composite ability measures and 
composite reliability, procedures include: 

 Selecting a MIRT model and assigning ability dimensions to components; 
 Selecting an appropriate person sample for item calibration; 
 Calibrating the items from all components and obtaining person measures on all 

dimensions using IRT analysis software; 
 Evaluating the degree to which the model assumptions are met; 
 Assigning weights to ability dimensions; 
 Calculating the composite person ability measure as the linear combination of 

the dimensional ability measures; 
 Calculating the error for the composite person ability measure; 
 Calculating the reliability of the composite ability measure. 
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4.3 Calculation of Composite Ability Measures, Standard Error and 
Composite Reliability 

Assuming that each component measures a single ability dimension, a composite 
ability measured by the components for a test taker c  can be obtained by linearly 

combining the ability measures on individual components: 

 

           (28) 
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where i  is the ability measure on component i, and n is the number of components. 

It is important to note that because of the indeterminacy of IRT model parameters 
when analysing test data using IRT software, and the relative difficulty of individual 
components, the ability measures from individual components may have their own 
origins or means. It might be necessary to rescale the ability measures from each 
component, so that measures from different components have similar means and 
standard deviations. The standard error of measurement of the composite ability 
measure  can be expressed as: cIRTSEM ,
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where  is the correlation between the ability measures for component i and 

component j, and  is the error variance of component i.  
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In the case of two components, Equation (29) can be expressed as: 
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A reliability measure for the composite  can be defined as: cIRTR ,
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where  is the average of the composite person measure error variance 

calculated using Equation (29), and  is the observed composite person 

measure variance. 

2
,, avgcIRT

2
,, IRTcO

The approach outlined above also applies for the case of multidimensional ability 
measures obtained from simultaneous analysis of items from all components, using a 
MIRT model. 

There are commercial IRT and MIRT software systems available for use in IRT 
analysis. These include WINSTEPS, ConQuest, PARSCALE, BILOG-MG, 
TESTFACT, and others (see Muraki and Bock, 1996; Wu et al, 2007; Bock et al, 
2003).  

 
4.4 Item Response Theory Analyses of the Simulated Dataset 

The simulated dataset was also analysed using IRT models. In the case of UIRT 
analyses, the responses from the two tests were first combined, and all items were 
analysed together using ConQuest developed by Wu et al (2007). ConQuest 
implements the MRCMLM model, of which Masters' PCM is a special case. Outputs 
from the programme include model fit statistics, person ability and item difficulty 
measures, and the associated standard error of measurement. An IRT-based 
reliability measure was estimated to be 0.93 for the combined ability measures, using 
the procedures outlined above. 

The two tests were then calibrated separately, which produced an IRT-based 
reliability of 0.80 for Test 1 and 0.91 for Test 2. These values are close to those 
produced using CTT analysis. Different weights were then assigned to the 
component ability measures, to produce composite ability measures. The correlation 
between the ability measures was estimated to be 0.77. The composite ability 
variances and error variances were then calculated, based on Equations (28) and 
(29), and the values of the composite reliability were calculated using Equation (31), 
based on different weights assigned to the two components as listed in Table 6. As 
Table 6 shows, the UIRT-based reliability coefficients for the composite are slightly 
lower than those obtained from CTT and G-theory analyses. The IRT-based 
composite reliability is also slightly lower than the higher of the reliabilities of the two 
components. This is different from CTT and G-theory. It has to be borne in mind that 
the weightings in IRT are different from CTT or G-theory, as IRT uses ability 
measures, not raw scores or mean scores. 
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Table 6 Values of IRT-based composite ability measure variances, standard errors of 

measurement, and composite reliability coefficients, based on UIRT analysis. 
 

Component weight 

1w  2w  
2

,, avgcIRT  2
,, IRTcO  cIRTR ,  

0.10 0.90 0.11 1.11 0.90 

0.25 0.75 0.11 1.00 0.89 

0.50 0.50 0.12 0.89 0.87 

0.75 0.25 0.14 0.86 0.86 

0.90 0.10 0.15 0.83 0.83 
 
 
The two tests were also assumed to measure two distinct ability dimensions and 
were treated as two components of a two-dimensional test (which only contains items 
with between-item multidimensionality), and analysed using the MRCMLM in 
ConQuest. MIRT-based reliability measures were estimated to be 0.87 for Test 1 
(measuring the first ability dimension) and 0.92 for Test 2 (measuring the second 
ability dimension). The correlation of ability measures between the two dimensions in 
this case was 0.94, which is substantially higher than that from separate calibrations. 
As with the separate UIRT analysis, a composite ability measure was produced by 
assigning different weights to the component (dimensional) ability measures, and a 
composite reliability was estimated (see Table 7). The composite reliability measures 
estimated using MIRT are slightly higher than those estimated using UIRT. 

 
Table 7 Values of IRT-based composite ability measure variances, standard errors of 

measurement, and composite reliability coefficients, based on MIRT analysis. 
 

Component Weight 

1w  2w  
2

,, avgcIRT  2
,, IRTcO  cIRTR ,  

0.10 0.90 0.09 1.13 0.92 

0.25 0.75 0.10 1.07 0.91 

0.50 0.50 0.10 1.00 0.90 

0.75 0.25 0.11 0.97 0.89 

0.90 0.10 0.12 0.91 0.87 
 
 

5. Concluding Remarks 

When a test or an examination is composed of several components, it is frequently 
required that the scores on individual components as well as an overall score are 
reported. The interpretation of the composite score requires a better understanding of 
the psychometric properties (particularly reliability and validity); of the individual 
components; the way the components are combined; and the effect of such a 
combination on the psychometric properties of the composite, particularly composite 
score reliability and validity. It has been shown that the way in which scores from 
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individual components are combined can raise a variety of methodological issues, 
including the investigation and interpretation of the reliability and validity of the 
composite score. It has been demonstrated that the reliability of composite scores is 
generally a function of the reliability measures and variances of the individual 
components, the weights assigned to individual components and the correlations 
between the components. Weighted component scores can be used to obtain a 
composite that has maximum reliability or validity with respect to an external criterion. 

It has been shown that CTT, G-theory and IRT produce very similar reliability 
measures for the composite scores derived from a simulated dataset. However, a 
fundamental difference exists between the different theories, in terms of how 
measurement error is treated. While in CTT a specific reliability measure for a test 
can only address one source of measurement error, G-theory can be used to assess 
the relative contributions from multiple sources of measurement error to the overall 
error variance. In G-theory, a measurement model can be used in a D-study to 
design a test with pre-specified measurement precision. G-theory is particularly 
useful in the early developmental stages of a test. For example, it can be used to 
explore the effect of various factors such as the number of tasks and the number of 
markers on the reliability of the test being designed, and to ensure that the 
acceptable degree of score reliability is reached before the test is used in live testing 
situations. G-theory studies can also be used to monitor the results from live testing, 
to ensure that the required level of score reliability is maintained. 

When modelling the performance of test takers on test items, IRT takes into account 
factors such as person ability and the characteristics of test items such as item 
difficulty and discrimination power that affect the performance of the test takers. This 
is useful for studying the functioning of test items individually and the functioning of 
the test as a whole. In IRT, the measurement error is model-based, which is a 
function of person ability and the characteristics of the items in the test and can be 
different at different locations on the measurement scale. When the model 
assumptions are met, IRT may be used for designing tests targeted at a specific 
ability level with a specific measurement precision. Both G-theory and IRT require 
special software systems to conduct analysis. 

The study of the psychometric properties of composite scores for public tests and 
examinations in England has received little attention, although such studies have 
been undertaken extensively elsewhere. However, such studies are needed in order 
to understand better how the individual components and the overall examination 
function in relation to the purpose set for the examination. In view of the nature of the 
examinations currently used by the UK qualifications system, the procedures outlined 
in this report would provide a useful basis for conducting such studies. 
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