

GCSE Subject Level Conditions and Requirements for Geology April 2016

Ofqual/16/5912

Contents

Introduction	2
About this document	2
Requirements set out in this document	2
Summary of requirements	3
Subject Level Conditions	5
GCSE Subject Level Conditions for Geology	6
Assessment objectives	9
Assessment objectives – GCSE Qualifications in Geology	10
Assessment requirements	11
Assessment requirements – GCSE Qualifications in Geology	12
Subject content (published by Department for Education)	14

Introduction

About this document

This document (highlighted in the figure below) is part of a suite of documents which sets out the regulatory requirements for awarding organisations offering GCSE qualifications (graded from 9 to 1).

General Conditions of Recognition

For all awarding organisations and all qualifications

GCSE Qualification Level Conditions and Requirements For all GCSEs (graded 9 to 1)

GCSE Subject Level Conditions and Requirements
For GCSEs (graded 9 to 1) in Geology

GCSE Subject Level Conditions and Requirements (Other subjects)

We have developed these requirements with the intention that GCSE qualifications (graded from 9 to 1) should fulfil the following purposes:

- To provide evidence of students' achievements against demanding and fulfilling content;
- To provide a strong foundation for further academic and vocational study and for employment; and
- To provide (if required) a basis for schools and colleges to be held accountable for the performance of all of their students.

Requirements set out in this document

This document sets out the GCSE Subject Level Conditions for Geology. These conditions will come into effect at 9:31am on Tuesday 5 April 2016 for all GCSE qualifications (graded from 9 to 1) in Geology.

It also sets out our requirements in relation to:

- assessment objectives awarding organisations must comply with these requirements under Condition GCSE(Geology)1.2; and
- assessment awarding organisations must comply with these requirements under Condition GCSE(Geology)2.1

Appendix 1 reproduces the requirements in relation to subject content for GCSE Geology¹, as published by the Department for Education. Awarding organisations must comply with these requirements under Condition GCSE(Geology)1.1.

With respect to GCSE qualifications (graded from 9 to 1) in Geology, awarding organisations must also comply with:

- our General Conditions of Recognition,² which apply to all awarding organisations and qualifications; and
- our GCSE Qualification Level Conditions;3 and
- all relevant Regulatory Documents.⁴

With respect to GCSE qualifications graded from A* to G, awarding organisations must continue to comply with the General Conditions of Recognition, and the relevant Regulatory Documents.

Summary of requirements

Subject Level Conditions			
GCSE(Geology)1	Compliance with content requirements		
GCSE(Geology)2	Assessment		
GCSE(Geology)3	Fieldwork statements		

¹ www.gov.uk/government/publications/gcse-geology

² www.gov.uk/government/publications/general-conditions-of-recognition

³ www.gov.uk/government/publications/gcse-9-to-1-qualification-level-conditions

⁴ www.gov.uk/guidance/regulatory-document-list

Assessment Objectives

Assessment Objectives - GCSE Qualifications in Geology

Assessment requirements

Assessment requirements - GCSE Qualifications in Geology

Appendix 1 – Subject content (published by Department for Education)

GCSE Geology: subject content

Subject Level Conditions

GCSE Subject Level Conditions for Geology

Condition GCSE(Geology)1

Compliance with content requirements

GCSE(Geology)1.1

In respect of each GCSE Qualification in Geology which it makes available, or proposes to make available, an awarding organisation must –

- (a) comply with the requirements relating to that qualification set out in the document published by the Secretary of State entitled 'Geology GCSE subject content'⁵, document reference DFE-00211-2015,
- (b) have regard to any recommendations or guidelines relating to that qualification set out in that document, and
- (c) interpret that document in accordance with any requirements, and having regard to any guidance, which may be published by Ofqual and revised from time to time.

GCSE(Geology)1.2

In respect of each GCSE Qualification in Geology which it makes available, or proposes to make available, an awarding organisation must comply with any requirements, and have regard to any guidance, relating to the objectives to be met by any assessment for that qualification which may be published by Ofqual and revised from time to time.

⁵ www.gov.uk/government/publications/gcse-geology

Condition GCSE(Geology)2

Assessment

GCSE(Geology)2.1

An awarding organisation must ensure that in respect of each assessment for a GCSE Qualification in Geology which it makes available it complies with any requirements, and has regard to any guidance, which may be published by Ofqual and revised from time to time.

Condition GCSE(Geology)3

Fieldwork statements

GCSE(Geology)3.1

In respect of each assessment cycle for a GCSE Qualification in Geology which it makes available, an awarding organisation must –

- (a) require each Centre to provide a fieldwork statement to the awarding organisation, and
- (b) treat any failure by a Centre to provide a fieldwork statement to the awarding organisation in a timely manner as malpractice and/or maladministration (under General Condition A8 (*Malpractice and maladministration*)).

GCSE(Geology)3.2

For the purposes of this condition, a 'fieldwork statement' is a true and accurate written statement made by a Centre to an awarding organisation which confirms that it has taken reasonable steps to secure that each Learner to which that Centre has delivered the assessments to be taken in a particular assessment cycle for a GCSE Qualification in Geology which the awarding organisation makes available has met the requirements for practical work set out in Paragraph 10 of the document published by the Secretary of State entitled 'Geology GCSE subject content'⁶, document reference DFF-00211-2015.

⁶ www.gov.uk/government/publications/gcse-geology

Assessment objectives

Assessment objectives – GCSE Qualifications in Geology

Condition GCSE(Geology)1.2 allows us to specify requirements relating to the objectives to be met by any assessment for GCSE Qualifications in Geology.

The assessment objectives set out below constitute requirements for the purposes of Condition GCSE(Geology)1.2. Awarding organisations must comply with these requirements in relation to all GCSE Qualifications in Geology they make available.

	Objective	Weighting
AO1	Demonstrate knowledge and understanding of geological ideas, skills and techniques	40%
AO2	Apply knowledge and understanding of geological ideas, skills and techniques	40%
AO3	Analyse, interpret and evaluate geological ideas, information and evidence to make judgements and draw conclusions	20%

Assessment requirements

Assessment requirements – GCSE Qualifications in Geology

Condition GCSE(Geology)2.1 allows us to specify requirements in relation to assessments for GCSE Qualifications in Geology.

We set out below our requirements for the purposes of Condition GCSE(Geology)2.1. Awarding organisations must comply with these requirements in relation to all GCSE Qualifications in Geology they make available.

Mathematical skills

The subject content for GCSE Qualifications in Geology is set out in the document published by the Secretary of State entitled 'Geology GCSE subject content', document reference DFE-00211-2015 (the 'Content Document').

Appendix 1 to the Content Document specifies the mathematical knowledge, skills and understanding which Learners will be required to use and apply in GCSE Qualifications in Geology ('Mathematical Skills').

In designing and setting the assessments for a GCSE Qualification in Geology which it makes available, or proposes to make available, an awarding organisation must ensure that –

- questions and tasks rewarding the use of Mathematical Skills assess those skills within the context of other areas of the subject content, and not in isolation,
- (b) in each set of assessments,⁷ at least 10 per cent of the total marks for the qualification reward the use of Mathematical Skills at a Level of Demand which is not lower than that which is expected of Learners at Key Stage 3 as outlined in the Department for Education's document 'Mathematics programmes of study: key stage 3',⁸ document reference DFE-00179-2013, and
- (c) without prejudice to the above requirements and those outlined in the Content Document, in each set of assessments Mathematical Skills are assessed

⁷ For the purposes of these requirements, a 'set of assessments' means the assessments to be taken by a particular Learner for a GCSE Qualification in Geology. For clarity, the assessments taken by Learners may vary, depending on any possible routes through the qualification.

⁸ www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study

across a range of Levels of Demand which supports effective differentiation in relation to the qualification.

Assessment of Learners in relation to geological skills and techniques

In designing and setting the assessments for each GCSE Qualification in Geology which it makes available, or proposes to make available, an awarding organisation must ensure that, taking the assessments for that qualification together —

- (a) Learners' knowledge, skills and understanding in relation to geological skills and techniques is assessed across assessment objectives AO1, AO2 and AO3,
- (b) the number of marks used to credit such knowledge, skills and understanding is no less than 15 per cent of the total marks for the qualification,
- (c) the questions and tasks which test Learners' knowledge, skills and understanding in relation to geological skills and techniques draw on, and combine as appropriate, the theoretical and technical aspects of those skills and techniques, and
- (d) over the shortest period of time that is reasonably practicable, Learners are assessed in relation to all of the skills and techniques specified in paragraphs 8 and 9 of the Content Document.

Subject content (published by Department for Education)

Geology

GCSE subject content

December 2015

Contents

The content for geology GCSE	3
Introduction	3
Aims and objectives	3
Subject content	3
Knowledge, understanding and skills	4
Appendix 1	10
Mathematical skills	10
Arithmetic and numerical computation	10
Handling data	10
Algebra	10
Graphs	10
Geometry and trigonometry	10

The content for geology GCSE

Introduction

1. The GCSE subject content sets out the knowledge, understanding and skills for GCSE specifications in geology, to ensure progression from key stage 3 national curriculum science requirements and provide a sound basis for further study, including at A level. It provides the framework within which awarding organisations create the detail of the subject specifications.

Aims and objectives

- 2. GCSE study in geology provides the foundations for understanding the science of 'how the Earth works': its structure, evolution and dynamics, and its mineral and energy resources.
- 3. Understanding and application of Earth science is vital to the future quality of life and prosperity of the world's population; from supplying the ever-growing demand for mineral, energy and water resources to mitigation of natural hazards by improved engineering and prediction techniques.
- 4. GCSE geology specifications should enable students to:
 - develop knowledge and understanding of rock types, geological structures, geochronology, the rock cycle and plate tectonics as the key ideas of geology
 - develop understanding of the nature, processes and methods of geology, through the different types of scientific enquiry used to answer questions about how the Earth works
 - develop and learn to apply observational, practical, modelling, enquiry and problem-solving skills, both in the laboratory and in the field, and extend their competence in a range of fieldwork skills, including those required in understanding 3D geological data
 - develop their ability to evaluate claims based on science through critical analysis
 of the methodology, evidence and conclusions, both qualitatively and
 quantitatively

Subject content

5. GCSE geology specifications must build on the knowledge, understanding and skills set out in key stage 3 national curriculum requirements for science and mathematics.

Knowledge, understanding and skills

6. GCSE geology specifications must require students to demonstrate knowledge and understanding of the content set out below:

Minerals

- the physical properties of minerals
- modes of formation of common rock-forming minerals
- modern laboratory techniques in the study of minerals (scanning electron microscope, electron microprobe)
- the uses of a minimum of three minerals (at least one in construction, one in industrial manufacturing and one in energy generation)

Igneous rocks

- diagnostic textures and mineralogy of igneous rocks
- characteristics of a minimum of four igneous rocks (one ultramafic, one mafic, one intermediate and one silicic)
- the effect of magma cooling rates on crystal size
- the effect of viscosity of magma on the type of volcanic activity and morphology of the volcano
- the characteristics of passive and violent eruptions
- structures within igneous bodies (columnar joints and pillow structures)
- the forms of igneous bodies (lava flows, sills, dykes and plutons)
- the characteristics of igneous bodies (textures, structures and field relationships) in hand specimen/rock exposures, simple geological maps, diagrams and photographs

Sedimentary rocks and their fossil content

- diagnostic textures and mineralogy of sedimentary rocks
- characteristics of a minimum of four sedimentary rocks (at least one of clastic, one of chemical and one of organic origin)
- the relationship between sedimentary textures (size, shape and sorting of the grains) and processes within the rock cycle
- the structures within sedimentary rocks (lamination/bedding, graded bedding, cross bedding, ripple marks and desiccation cracks)
- the influence the degree of compaction and cementation of sedimentary grains on porosity and permeability of sedimentary rocks
- sedimentary rock type and fossil content as evidence of the environment of deposition (marine and terrestrial) over geological time
- the characteristics of sedimentary rocks (textures, structures and fossil content) in rock exposures, simple geological maps, diagrams and photographs
- morphology of a minimum of three fossil groups (including corals and plants)

- the significance of major fossil discoveries (including Burgess Shale fauna)
- the morphology of modern reptiles and birds (the link with macro fossil evolution Archaeopteryx)
- the incomplete nature of the fossil record
- features of early hominids ('Lucy')

Metamorphic rocks

- diagnostic textures and mineralogy of metamorphic rocks
- characteristics of a minimum of two metamorphic rocks (one contact and one regional metamorphic)
- the relationship between metamorphic textures (crystal size and orientation) and processes within the rock cycle
- the formation of metamorphic rocks as a result of heat and/or pressure on preexisting rocks
- foliated textures (slaty cleavage and schistosity)
- the characteristic features of a metamorphic aureole on simple geological maps/diagrams
- the characteristics of metamorphic rocks (textures and reaction with acid) in hand specimen/rock exposures, simple geological maps and diagrams, and photographs

Structures

- the evidence of tectonic activity in the rock record
- the concept of dip and strike of 3D planar surfaces
- the characteristics of rock structures (folds, faults and unconformities) in field exposures, simple geological maps and diagrams, and photographs
- folding caused by compressional stresses
- characteristic features of folding (antiforms/synforms and axial plane traces) in field exposures, simple geological maps, and diagrams and photographs
- processes and causes of faulting in compressional, tensional and strike-slip dominated regimes
- characteristic features of faulting (normal/reverse, thrust and strike-slip displacement) in field exposures, simple geological maps, and diagrams and photographs
- unconformities as breaks in the rock record
- the characteristics of unconformities in the field, in photographs, and in diagrams and on geological maps
- unconformities in interpreting geological history

Planetary geology

• the similarities and differences (rocks, landscapes, atmosphere, temperature, pressure and gravity) between the Earth and its planetary neighbours

- meteorite evidence for the composition of the Earth
- the impact that meteorites/comets may have had on the Earth's evolution
- planetary features as analogues for unseen Earth processes (e.g. Moon impact craters)
- the use of space imagery and exploration technology in obtaining planetary exploration data (e.g. Moon and Mars)

Geochronological principles and stratigraphy

- the principle of uniformitarianism
- the concepts of original horizontality, lateral continuity and superposition
- the relative dating of rocks based on included fragments, crosscutting relationships and fossil assemblages
- stratigraphic principles in interpreting the geological history of rock exposures in the field, and in diagrams and photographs
- radioactive decay rates and radiometric age determinations
- the development of the concept of deep time (The Bible, Hutton, Kelvin, Joly and Holmes)

Rock cycle

- the differing rates of rock cycle processes ('seconds' catastrophism, compared to 'millions of years' gradualism)
- the rock cycle linked to igneous, sedimentary and metamorphic processes over geological time (energy transfer)
- the relevance of weathering and erosion to sedimentary characteristics (size, shape and sorting) and geological history

Plate tectonics

- the structure of the Earth in terms of its chemical properties (crust, mantle and core) and mechanical behaviour
- the concept of a "tectonic plate" (related to its mechanical behaviour lithosphere and asthenosphere)
- the evidence for plate tectonics theory (maps and seismic, magnetic, heat flow, fossil and Global Positioning System (GPS) data) and the related plate movement
- the type of magmatism, seismic activity, deformation and topographic features associated with different plate boundaries
- plate theory as being continually re-evaluated in the light of new evidence

Past global temperature and sea level changes

 the major sources of carbon dioxide in the atmosphere (volcanic emissions and burning of fossil fuels)

- the evidence for changes in climate through geological time (icehouse to greenhouse conditions) and sea level from sedimentary rocks (tillite, limestone and drowned forests)
- the evidence for changes in atmospheric carbon dioxide levels over geological time (sedimentary rock and ice cores)
- the effect on climate of the northward movement of the British area from the Lower Palaeozoic to the Cenozoic
- the positive and negative controls on the long term carbon cycle (subduction, volcanic emissions, chemical weathering and marine storage)
- the effect of global temperature change on ice sheets and sea levels over geological time
- carbon sequestration as a geological strategy for reducing atmospheric carbon dioxide

The origin and development of life

- the probable origin of life in the oceans ~3500 Ma (black smokers/hydrothermal pools)
- simple evolutionary tree diagrams (cladograms)
- the evolutionary change in zone fossils over time
- the diversity in the evolution of life from the fossil record
- major extinction events which punctuate the evolution of life on Earth as exemplified by the Cretaceous/Palaeogene [K-T] mass extinction

Earth hazards and their mitigation

- the concept of a geological hazard as a risk to life and property
- the distribution, measurement and possible causes of earthquakes, volcanic eruptions, landslides and associated tsunamis (as part of an Earth systems approach)
- a minimum of two techniques used in natural hazard prediction (e.g. correlation spectrometer (COSPEC) in volcanic eruption prediction)
- the limited accuracy of natural hazard prediction

Earth resources and engineering

- the use of mapping (including micropalaeontology) and geophysical techniques (seismic, magnetic and ground penetrating radar) and geochemical techniques (soil and river sediment analysis) in prospecting for new resources
- the characteristic structures of potential gas/oilfield resources (on-shore and off-shore)
- the role of porosity and permeability in the accumulation and migration of oil and gas from source beds to reservoir rock
- the main types of oil and gas traps (anticline, fault, unconformity and salt dome)

- the technological difficulties and environmental issues involved in the exploration and exploitation of hydrocarbon deposits (including fracking)
- the suitability of different rock types as aquifers (porosity and permeability)
- the monitoring and restoration of polluted water and contaminated ground
- the potential impact of domestic and hazardous waste disposal on vulnerable aquifers
- the geological and engineering issues involved in waste disposal and the long term storage of hazardous waste
- the geological factors affecting the siting of engineering projects such as reservoirs, dams, tunnels and cuttings (permeability, stability of bedrock, dip of strata, presence of joints and faults)
- 7. GCSE geology specifications must require students to demonstrate the following skills in the context of the knowledge and understanding set out in paragraph 6:
 - use theories, models and ideas to develop geological explanations and present geological arguments
 - use appropriate methodology to answer geological questions and solve geological problems
 - evaluate methodology, evidence and partial data sets, and resolve conflicting evidence
- 8. GCSE geology specifications must require students to demonstrate the following skills and techniques:
 - recording observations
 - use of photomicrographs to identify minerals and rock textures
 - constructing graphic logs
 - applying classification systems
 - producing annotated scientific drawings
 - constructing geological maps
 - constructing geological histories
- 9. GCSE geology specifications must require students to demonstrate knowledge and understanding of the following skills and techniques:
 - location of geological features in the field using traditional navigation and basic field survey skills, and with the use of GPS
 - identification of geological structures in the field
 - measurement of two and three-dimensional geological data across a range of scales such as dip and strike of planar surfaces or apparent dip of fold limbs exposed on a hillside or cliff section using a compass clinometer
 - sampling

- production of full rock description of macro and micro features from conserved hand specimens and unfamiliar field exposures
- use of appropriate apparatus to record a range of quantitative measurements (mass, time, volume, temperature and length)
- use of physical and chemical testing to identify minerals:
 - density test
 - Mohs hardness test
- use of methods to increase accuracy of measurements, such as timing over multiple observations, or use of a set square or plumb line
- compilation and analysis of geological data sets through to visualization using a geographic information system (GIS)
- use of information and communications technology (ICT) such as computer modelling, or data logger to collect data, or use of software to process data
- 10. The knowledge, understanding and skills required in paragraphs 8 and 9 should be developed through regular hands-on practical activities undertaken in the classroom and in the field. GCSE geology specifications must ensure that students undertake a minimum of two days of work in the field, during which they should have at least one opportunity to carry out a directed investigation to answer a geological question.
- 11. GCSE geology specifications must require students to demonstrate the mathematical skills set out in appendix 1.

Appendix 1

Mathematical skills

Arithmetic and numerical computation

- recognise and use expressions in decimal form
- recognise and use expressions in standard form
- use ratios, fractions and percentages
- calculate squares and square roots

Handling data

- use an appropriate number of significant figures
- find arithmetic means
- construct and interpret frequency tables, bar charts and rose diagrams
- understand the principles of sampling as applied to geological data
- use a scatter diagram to identify correlation between two variables
- make order of magnitude calculations

Algebra

- understand and use the symbols =, <, <<, >>, > , ∞ and ~
- change the subject of an equation
- substitute numerical values into algebraic equations using appropriate units for physical quantities
- solve simple algebraic equations

Graphs

- translate information between graphical and numeric form
- plot two variables from experimental or other data
- draw an appropriate trend line onto plotted data
- interpret data presented in graphical form
- determine the slope of a graph
- calculate the rate of change from a graph showing a linear relationship
- draw and use the slope of a tangent to a curve as a measure of rate of change

Geometry and trigonometry

- use angular measures in degrees
- visualise and represent 2D and 3D forms including two dimensional representations of 3D objects
- calculate areas of triangles and rectangles, surface areas and volumes of cubes

© Crown copyright 2015

This publication (not including logos) is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

To view this licence:

visit www.nationalarchives.gov.uk/doc/open-government-licence/version/3

email psi@nationalarchives.gsi.gov.uk

write to Information Policy Team, The National Archives, Kew, London, TW9 4DU

About this publication:

enquiries <u>www.education.gov.uk/contactus</u> download <u>www.gov.uk/government/publications</u>

Reference: DFE-00211-2015

7

Follow us on Twitter: @educationgovuk

Like us on Facebook:

facebook.com/educationgovuk

We wish to make our publications widely accessible. Please contact us at publications@ofqual.gov.uk if you have any specific accessibility requirements.

© Crown copyright 2016

This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit http://nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: publications@ofqual.gov.uk.

Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

This publication is available at www.gov.uk/ofqual.

Any enquiries regarding this publication should be sent to us at:

Office of Qualifications and Examinations Regulation

Spring Place 2nd Floor

Coventry Business Park Glendinning House
Herald Avenue 6 Murray Street
Coventry CV5 6UB Belfast BT1 6DN

Telephone 0300 303 3344 Textphone 0300 303 3345 Helpline 0300 303 3346