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Summary 

Anomaly in test results refers to deviation of item response patterns and/or test 

scores for individual test-takers or groups of test-takers from those that are expected 

based on theoretical/empirical models or those from others in the sample or the 

population. There are many factors that can cause anomaly in responses and test 

scores. These include inappropriateness of the test for the test-takers in terms of the 

levels of ability of the test-takers and the type of knowledge and skills being 

assessed by the test; unconventional behaviours of the test-takers in answering 

questions; inappropriate behaviours such as cheating by either the test-takers 

themselves or those acting on behalf of them; and others. The existence of 

aberrance in test results can make test scores inaccurate and invalidate their 

proposed interpretations and uses. This report reviews a selection of statistical 

techniques that have been widely used to study anomaly in test results at both 

individual test-taker and group levels. Particular attention has been paid to the 

suitability of the various methods to analyse tests of different formats: 

 tests composed of multiple choice questions, short-answer questions, or 

extended-response questions 

 linear or adaptive testing 

And their features in terms of: 

 the underlying assumptions made about the statistical models or empirical 

relationships used to derive the necessary statistics to measure aberrance 

 the power and accuracy of the aberrance measures in detecting anomaly 

associated with different types of inappropriate behaviours such as answer 

copying, answer changing, item pre-knowledge, or inappropriate marking/scoring 

 and their implications for practical application in terms of interpretability of the 

aberrance measures, resource requirement, and availability of software packages 

to conduct the necessary analyses 

The report is intended for use as a reference by researchers working in the field of 

educational assessment. 
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1. Introduction 

Responses to items in a test and the aggregated test score from a test-taker can be 

affected by a variety of factors, including the appropriateness of the test for the test-

taker in terms of the level of ability and the type of knowledge and skills that the test 

is intended to measure. When a test is appropriate for a test-taker with a certain level 

of ability, the item response pattern or test score can be predicated with a certain 

degree of certainty based on the underpinning measurement model used or the 

response patterns and scores from test-takers with similar level of ability in the 

sample or population. If an observed response pattern and test score for a test-taker 

do not conform to the expected pattern and score or those from other test-takers, the 

response pattern and score are aberrant. There are many factors that can generate 

anomalous responses and test scores. These include inappropriateness of the test 

for the test-takers being tested, unconventional behaviours of the test-takers in 

answering questions, inappropriate behaviours such as cheating by either the test-

takers themselves or those acting on behalf of them, and many others (see Meijer, 

1996a, b; Karabatson, 2003; Thiessen, 2008). Aberrant responses can result in 

spuriously high or spuriously low test scores for test-takers. The existence of 

aberrance in test results can make test scores inaccurate and invalidate their 

proposed interpretations and uses (see Cizek and Wollack, 2017). 

Meijer (1996a, b) described five factors that can cause a test-taker’s responses to 

items in a test to be aberrant, producing spuriously high or low scores: cheating, 

careless responding, lucky guessing, creative responding, and random responding 

(also see Karabatson, 2003; Meijer and Sijtsma, 2001; Thiessen, 2008; Emmen, 

2011; Tendeiro, 2013). Cheating refers to behaviours where the test-taker 

illegitimately obtains the correct answers on items which they are unable to answer 

correctly through pre-knowledge of the items or copying answers from other test-

takers or answers provided by their teachers. Careless responding happens when 

the test-taker answers certain items in the test incorrectly which they are able to 

answer correctly. Lucky guessing occurs when the test-taker guesses the correct 

answers to some test items (such as multiple choice items) which they do not know 

the correct answer. Creative responding happens when a high ability test-taker 

obtains incorrect answers to certain easy items due to creative and complicated 

interpretations of the items. Random responding occurs when the test-taker just 

randomly select the alternatives of some multiple choice items. 

Cheating or inappropriate behaviours can take place at both individual test-taker 

level and group level involving a large number of test-takers from the same class (or 

school) or different classes (or schools). Cheating that happens at group level can in 

some cases involve teachers or other relevant people who assist the test-takers to 

increase their test scores illegitimately. This type of cheating is referred to as 

educator cheating (Thiessen, 2008). Group level cheating represents test collusion, 

which may include teacher cheating, test coaching, either by a classroom teacher or 
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from a review course, systematic answer sharing during the test, use of harvested 

items, inappropriate marking or scoring test-takers’ work, and others (see Wollack 

and Mayes, 2011; Belov, 2013). As indicated by Belov (2013), test collusion is not 

limited by the geographic location (eg room, class, school) and can be extended to 

support various relations between test-takers (eg from the same test-preparation 

centre, the same group at a social network). Since results from assessments can be 

used for purposes such as certification of individuals, selection of individuals for 

further learning/training programmes, and the accountability of teachers and schools, 

they can be high-stakes for both individuals (students and teachers) and schools. 

Cheating represents one of the potential negative consequences associated with 

high-stakes testing (see Cizek, 1999; Madaus et al., 2009). Analysis of anomaly in 

test results has been used for various purposes, including providing diagnostic 

information about students’ learning and detection of cheating (Meijer and Sijtsma, 

2001; Karabatson, 2003; Meijer and Tendeiro, 2014). A large number of statistical 

techniques have been developed to study aberrant responses and anomalous test 

scores, with particular focus on detecting anomaly associated with different types of 

cheating. Although research on methods used to detect test cheating has been 

primarily focused on individual test-takers, recent years have seen increasing studies 

on methods used for detecting test collusion (see Wollack and Maynes, 2011; Belov, 

2013). Most of such studies were undertaken by researchers in the United States 

and the Netherlands. 

There has been increasing discussion about inappropriate test-taking behaviours by 

individuals and institutions in high-stakes national assessments and qualifications 

used in the UK and interests in methods used to identify institutions with unusual 

performances in tests and examinations (see, for example, Ofqual, 2012; He and 

Stockford, 2015). There have been numerous studies involving the use of multiple 

statistical methods to investigate anomaly in test results to detect cheating and test 

collusion and reviews of specific types of aberrant statistics (see Meijer and Sijtsma, 

2001; Karabatson, 2003; Wollack, 2006; Plackner and Primoli, 2014; Meijer et al., 

2015). This report intends to provide a more comprehensive review of the most 

widely used statistical techniques for detecting anomalous test results associated 

with different types of cheating at both individual test-taker and group levels, drawing 

on findings from the most recent research in this area and with a particular focus on 

the potential of using these techniques in the context of high-stakes national 

assessments used in the UK. 

2. Methodology 

Research papers and reports were collected from a range of sources for review, 

including: 

 those published in academic journals and books 
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 those published on the internet by individual researchers, assessment 

organisations and other research institutions 

 unpublished reports from UK exam boards, assessment organisations and other 

research institutions 

Particular attention of the review has been paid to the suitability of the methods to 

analyse tests of different formats: 

 tests composed of multiple choice questions, short-answer questions, or 

extended-response questions 

 linear or adaptive testing 

And their features in terms of: 

 the underlying assumptions of the statistical models that are made to derive the 

necessary statistics used for measuring aberrance 

 the power (rates of detection) and accuracy (Type I error rates or false positive 

rates) of the techniques in detecting anomaly associated with different types of 

inappropriate behaviours such as answer copying, answer changing, item pre-

knowledge, or inappropriate marking/scoring for individual test-takers and groups 

of test-takers 

 the implications for practical application in terms of interpretability of the aberrance 

measures derived, resource requirement, and availability of software packages to 

conduct the analyses 

Effort was also made to briefly describe most of the important steps involved in 

deriving and applying the techniques reviewed. 

3. Analysis of aberrant item response patterns and 

test scores for individuals 

3.1 Analysis based on person-fit (misfit) statistics 

Item response or score patterns from individual test-takers may provide additional 

information to total scores on a test (Meijer and Tendeiro, 2014). One of the 

approaches used to study item response patterns is person-fit analysis which 

generally involves the comparison of the observed response pattern from a test-taker 

with his/her expected response pattern (Karabatsos, 2003; Meijer and Tendeiro, 

2014), and a person-fit statistic is derived to characterise the similarity between the 

observed and expected patterns. If the observed response pattern conforms to the 

expected response pattern sufficiently well, the person’s response pattern is 

regarded as reasonable or non-aberrant. If, on the other hand, the person’s 

response pattern departs from the expected pattern substantially, his/her response 

pattern is said to be aberrant or the person is misfitting. There are generally two 

approaches that can be used to determine the expected response pattern: the 
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expected (predicted) response pattern is produced using a theoretical or 

mathematical model (such as an item response theory model) that characterises the 

interaction between the person and the items in the test, or the expected response 

pattern is based on the observed response patterns from all test-takers included in 

the sample. Person-fit indices associated with the first approach are also termed 

parametric indices, while those associated with the second approach non-parametric 

indices. 

The basic idea used to derive person-fit statistics is that the item response pattern 

from a test-taker should reflect the difficulty distribution of the items (see Bishop and 

Stephens, 2013). A test-taker should have a larger chance to answer an easy item 

correctly than a harder item. Bishop and Stephens (2013) grouped the methods used 

to derive person-fit statistics into three categories: 

 Likelihood: The likelihood approach examines the likelihood that the test-taker’s 

response pattern agrees with the model predicted item response pattern, with 

higher maximum value of the likelihood function indicating better agreement. 

 Covariance: The covariance approach looks at the degree the test-taker’s 

response pattern diverges from the Gutmman Perfect Pattern. If a test-taker 

answered all easy items correctly but more difficulty items incorrectly, then his/her 

score pattern is a “Guttman Perfect Pattern”. 

 Deviation: The deviation approach examines the sum of the differences (or 

squares of the differences) between the observed responses and the predicted or 

expected responses for individual items, with higher values indicating larger 

deviation of the observed item response pattern from the predicted response 

pattern.  

Meijer and Sijtsma (2001) provided a comprehensive review of a wide range of 

person-fit statistics. Karabatsos (2003), Thiessen (2008), Meijer and Tendeiro (2014) 

and Meijer et al. (2015) discussed and applied different person-fit indices in their 

studies. Some of the widely used indices are discussed below in more detail. 

3.1.1 Tests composed of dichotomous items 

This section discusses indices used for tests composed of dichotomous items. 

Non-parametric person-fit indices 

Guttman’s G indices 

The simplest non-parametric person-fit index is the G statistic proposed by Guttman 

(1950, see also Meijer, 1994; Thiessen, 2008). The dichotomous items in a test are 

sorted according to their difficulty (eg proportion correct). If the items are paired, the 

G statistic for person n is defined as the counts of the response pairs that deviate 



Statistical techniques for studying anomaly in test results 

 

9 
 

from the Guttman Perfect Pattern (or the number of Guttman errors) (see Meijer, 

1994): 
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A perfect Guttman response pattern will produce a G value of zero. Higher G values 
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where nr  is the total score of person n on the J test items. Values of G* are in the 

range [0,1], with 0 representing perfect Guttman distribution and 1 the reversed 

Guttman distribution. 

The U3 index 

The non-parametric U3 index is also a measure of deviance of score patterns and is 
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Values of U3 can vary from 0 to 1. Again, when the response pattern is the perfect 

Guttman pattern, the value is 0. If the response pattern is a completely reversed 

Guttman pattern, U3 will be 1. U3 can be standardised to have an asymptotically 

normal distribution (see Meijer and Sijtsma, 2001; Karabatsos, 2003): 
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where )3(UE  and )3(UVar  are the expectation and variance of 3U  respectively. 

The Caution Indices 

The Caution Index C examines the ratio of the covariance between a person’s item 

scores and the item proportion scores and the covariance between the person’s item 

scores on the easiest items and the item proportion scores and is calculated from the 

following equation (see Sato, 1975; Thiessen, 2008; Karabatsos, 2003): 
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where: 
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*

nX  = examinee n’s response vector containing correct responses only for the 

easiest nr items. 

As can be seen, if the person’s response pattern is a perfect Guttman pattern, the 

value of C will be zero. C is therefore a measure of the degree to which the person’s 

item score pattern departs from the Guttman Perfect Pattern. However, C does not 

have a fixed upper bound and is difficult to interpret (see Meijer and Sijtsma, 2001). 

Sato suggested that response patterns with C over 0.50 may be regarded as 

aberrant (also see Huang 2012). Karabatsos (2003) suggested to use 0.53. 

Harnisch and Linn (1981) proposed the Modified Caution Index (MCI) which also is a 

measure of the departure of the response pattern from the Guttman perfect response 

pattern: 
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where nX   = examinee n’s response vector containing correct responses only for the 

most difficult nrJ   items. Values of MCI vary from 0 (perfect Guttman pattern) to 1 

(reverse Guttman pattern, see Meijer and Sijtsma, 2001; Meijer and Tendeiro, 2014). 

A critical value of 0.30 was proposed to identify aberrant response patterns. 

Sijtsma’s 
TH  Index 

The non-parametric index T

nH  proposed by Sijtsma (1986, also see Karabatsos, 

2003; Meijor and Tendeiro, 2014) looks at the covariance between the item response 

pattern of a test-taker n and the covariance of the other test-takers and is defined as: 
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where: 

 n = proportion correct for test-taker n over the J test items 

 m = proportion correct for test-taker m over the J test items, 

 nm  = covariance of item scores between n and m 

Values of 
TH  range from -1 to 1. Persons with low values of 

TH  are assumed to 

have aberrant response patterns. When the covariance between a person’s 

response pattern and those of other test-takers is zero, 
TH  will be zero. When the 

covariance is negative, 
TH  will be negative.  

Non-parametric cumulative sum (CUSUM) statistics 

When studying the responses of persons taking computer adaptive tests (CATs), 

Bradlow et al. (1998), van Krimpen-Stoop and Meijer (2000, 2001) and Meijer (2002) 

proposed the use of the item response theory (IRT) based cumulative procedure to 

detect mis-fitting persons (see later discussion). This procedure can also be applied 

to other forms of tests such as computer based linear tests (CBTs) and paper and 

pencil (P&P) tests. The idea of using CUSUM statistics in person-fit studies rests on 

the fact that aberrant behaviour frequently occurs during just one or more of its 

segments rather than being manifested during the entire test (Armstrong and Shi, 

2009). Armstrong and Shi (2009) presented a cumulative sum approach which is 

based on the likelihood of two probabilities and does not rely on the use of item 

response function under the IRT framework. The CUSUM statistics are conditioned 

on the number of correct (NoC) scores. The probability, )(spi , of a correct response 

to the ith item, given the total number of correct answers s on the test, is assumed to 

be the same for all test takers. This probability can be estimated as the unconditional 
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empirical probability of a correct response. The probability of a person with aberrant 

response on the item, )(* spi , is represented as a upward or downward shift of )(spi . 

The difference between )(* spi  and )(spi  can be tested for significance using the 

likelihood ratio test for the upwards shift U

i  or downwards shift L

i : 
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In the above equations, the parameters can be estimated using three points meeting 

the conditions described above. An aberrant pattern can be identified after multiple 

responses using two of the CUSUM statistics, designated as U

iC  and L

iC  

respectively, after answering i items: 
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For a given level of significance  , the upper bound UB, Uh ,and the lower bound LB, 

Lh , can be estimated empirically. Respondents with values in any of the element of 

the CUSUM statistics beyond the critical values are classified as aberrant 

respondents. 
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A more general situation is that the aberrant behaviour can be associated with an 

upward ability shift on some items and downward shift for some other items. In this 

case, the following statistic was proposed: 

 )min()max( L
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The CUSUM method based on LR

iC  statistic is denoted as LRCUSUM . Critical values 

for the three CUSUM statistics can be estimated empirically using Monte Carlo 

simulations. 

Parametric person-fit indices 

While the non-parametric person-fit statistics are generally derived empirically based 

on the observed response pattern of the individual concerned and the response 

patterns of the other test-takers, parametric indices are based on theoretical item 

response models. Frequently used IRT models for dichotomous items include the 

one-parameter logistic (1PL) model (which is the same as the Rasch model 

mathematically), the two-parameter logistic (2PL) model and the three-parameter 

logistic (3PL) model (see Hambleton et al, 1991). In IRT, the underlying ability or 

latent trait of an examinee to be measured by the test and the characteristics of the 

items in the test are specified, and a mathematical function (item response function – 

IRF) is used to describe the probability that a person will have a specific score on a 

particular item given his/her ability and the characteristics of the item. The 3PL 

model can be expressed as: 
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where: 

 D  = 1.7; 

 ja  = the discrimination parameter of item j 

 jc  = the guessing parameter of item j 

 n = the ability of person n 

 j  = the difficulty of item j 

 x = 1 or 0, the score of person i on item j 

 ijxP = the probability of person i scoring x on item j 
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When the guessing parameter is zero, the 3PL model becomes the 2PL model. 

When the discrimination parameter is 1, the 2PL model reduces to the 1PL model or 

the Rasch model (see Rasch, 1960; Wright and Stone, 1979): 
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The Wright’s weighted and unweighted person-fit statistics 

Wright and Stone (1979) proposed the unweighted and weighted person-fit statistics 

(also termed outfit and infit statistics) which are residual based for the Rasch model 

for dichotomous items: 
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Values of U and W can vary from 0 to infinity. When a person’s response pattern 

conforms to that predicted by the Rasch model, these indices will be close to 1. The 

unweighted U is more sensitive to unexpected responses to items with difficulties 

that are far from the ability of the person, while the weighted W is more sensitive to 

unexpected responses to items with difficulties that are close to the ability of the 

person. For both indices, when the value is less than 1, there is less variability in the 

response pattern than the model predicted (over-fit). When the value is above 1.0, 

there is more variability in the observed responses than the model predicted. Both 

indices follow a chi-square distribution with a mean of 1.0 (see Wright and 

Panchapakesan, 1969; Wu and Adam, 2007). Views on the values of these fit 

statistics that can be used to identify misfitting persons vary. Persons with infit 

statistics in the range from 0.70 to 1.30 are normally regarded as fitting the Rasch 

model well (Keeves and Alagumalai, 1999; Linacre, 2002). However, some 

researchers set the range of acceptable values for infit and outfit MNSQs even 

larger, from 0.60 to 1.40 (Tan and Yates 2007; Wong, McGrath and King 2011). 

Linacre (2002) suggested that when model fit statistics are above 2.0, the 

measurement system would be distorted. 
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The Trabin and Weiss’ )(D  index 

The index )(D  proposed by Trabin and Weiss (1983) is similar to the unweighted 

person-fit statistic proposed by Wright and Stone (1979): 
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where: 

 sJ  = the number of items in subset s 

 S = number of item sets in the test 

Instead of using individual items to calculate the fit statistics, the items are grouped 

based on their difficulty when calculating the fit statistics. 

The likelihood indices 

The indices W, U, and )(D  discussed above are based on the difference between 

the observed and the IRT model predicted response patterns. There are other 

approaches that have been proposed to investigate person model fit. In IRT or 

Rasch modelling, given the response patterns from a group of persons and the IRT 

model, both person and item parameters need to be estimated, and this normally 

involves the use of the likelihood function. In the case of the logistic models for 

dichotomous items, if the unidimensionaility and local independence assumptions of 

the models are met (see Hambleton et al., 1991), for a given response pattern 

),......,,( 21 nJnnn XXXX  , the likelihood of a person with ability   to get this response 
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01)( . The log value of the likelihood, )(nl , is: 

 ]ln)1(ln[)(ln()( 0

1

1 nj

J

j

njnjnjnn PXPXLl 


   

Once an observed response pattern is given, the ability   of the person can be 

estimated by maximising the log likelihood )(nl  if the item parameters are known. 

For the same ability or total test score, different response patterns will produce 

different maximum values of )(nl  ( 0l ): 

 )](ln)1()(ln[)](ln[ 0

1

10 nnj

J

j

njnnjnjnn PXPXLl  


    (14) 

A higher maximum value of the likelihood will indicate that the response pattern 

conforms better to that predicated by the IRT model than a response pattern with a 
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lower value. Levine and Rubin (1979) suggested to use 0l  as a person-fit index. 

When the IRT model is the 1PL model or the Rasch model, Molenaar and Hoijtink 

(1990, also see Meijer and Sijtsma, 2001) showed that: 

 
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j
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njn Xrl
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0 )]exp(1ln[   

This is because for the Rasch model, the total score is a sufficient statistic. Only the 

last term in the above equation is influenced by the person’s response pattern. 

Therefore, it was proposed as a fit statistic: 
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M is easy to calculate. Molenaar and Hoijtink (1990, also see Meijer and Sijtsma, 

2001) proposed three approximations to the distribution of M: (1) complete 

enumeration; (2) Monte Carlo simulation; and (3) a 
2  distribution, in which the 

mean, standard deviation (SD), and skewness of M are taken into account. 

Drasgow et al (1985) suggested a scandalised form of 0l , zl , which is approximately 

asymptotically standard normal: 
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Since it is a standard normal distribution, when |2| zl , the response pattern can be 

regarded as aberrant. Values less than -2.0 indicate that there is more variability in 

the observed response pattern than the model predicted (under-fit). In contrast, 

values larger than 2.0 suggest there is less variability in the person’s response 

pattern the model predicted (over-fit). Meijer and Sijtsma (2001) suggested to use a 

value of less than -1.65 for zl  to flag aberrant response patterns. 

Molenaar and hoijtink (1990) and Reise (1995) proved that when the true ability 

values are replaced with the ability estimates based on the sample, the asymptotic 

distribution of zl  is not a standardised normal distribution (also see Armstrong et al., 

2007). Snijders (2001) modified zl  to make an index denoted as 
*

zl  which is 

asymptotically standard normal distribution with sample ability estimates. Magis et al. 

(2012) suggested that the main reason that 
*

zl  has not been widely used is because 
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the original paper by Snijders (2001) was technically complicated. They then derived 

the index in a more accessible manner: 
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where:  
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 )(jP  = the first derivative of )(jP  

 )(jw  = the weight to be specified 

)(),( 0  rrj  = functions dependent on the IRT model and the estimation 

method used 

The corrected index 
*

zl  takes into account the sampling variability of the ability 

estimates when calculating the expectation and variance of the likelihood. Sinharay 

(2015a) suggested ways to improve the performance of 
*

zl  further. 

The extended modified caution indices 

Tatsuoka (1984) extended the non-parametric Caution Index to the three parameter 

logistic model and proposed four indices. 
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where: 

 ),......,,( 21 Jpppp  , item vector of proportion correct 
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 ),......,,( 12111 nJnnn PPPP  , vector of probabilities of correct answers by person n 

 G  = item vector of average of probabilities of correct answers by all persons 

As can be seen, the indices were derived by replacing the easiest response vector in 

the Caution Index with the expected probabilities of correct answers on all the items 

in the test, and the item proportion correct vector is replaced with the vector of the 

average modelled probabilities of correct answers or the expected probabilities of 

correct answers on all items. The expected value of ECI1, ECI2 and ECI4 is zero, 

while that of ECI6 is a function of the person ability. Tatsuoka further standardised 

these indices by subtracting their expected values and then dividing by their 

standard errors which can be estimated based on the IRT model used: 

 
)|(

)|(
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

ECIkSE

ECIkEECIk
SECIk


        (19) 

where: 

 )|( ECIkE  = the expected value for the person with ability  . 

 )|( ECIkSE = the standard error 

 k  = 1, 2, 4, or 6. 

The use of the standardised indices takes into consideration the fact that the original 

indices tends to inflate values at the extreme values of the ability parameter   as 

the error at the extremes are larger than those in the middle of the ability range. 

Further, they can be interpreted more easily when investigating the nature of 

aberrant responses. 

Parametric cumulative sum (CUSUM) statistics 

Bradlow et al. (1998), van Krimpen-Stoop and Meijer (2000, 2001, see also Egberink 

et al., 2010) and Meijer (2002) proposed the use of the cumulative sum procedure to 

detect mis-fitting persons in computer adaptive testing (CAT). Assume that )(ip  is 

the probability of a person with ability   obtaining a correct answer on the ith 

dichotomous item in the test (for example, the response function representing the 

3PL/2PL/Rasch model), a simple statistic T defined as a weighted value of the 

residual can be used as a measure of inconsistency (see Meijer, 2002): 

 )]([
1

iii px
J

T    

where J is the total number of items in the test and ix  (0 or 1) is the observed score. 

Two cumulative statistics can be defined as the sum of the T statistic: 
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Where }{ 

iC  and }{ 

iC  reflect the sum of the consecutive positive and negative 

average residuals respectively. If some appropriate upper and lower bonds, UB and 

LB, can be established, a response pattern can be classified as aberrant or unlikely if 

any of the element in }{ 

iC  and }{ 

iC  is above or below the bounds: 
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       (21) 

The upper and lower bonds can be established using simulations or empirically 

based on the obtained response data (see Meijer, 2002). van Krimpen-Stoop and 

Meijer (2002) extended the CUSUM procedure for tests composed of polytomous 

items (see later discussion). 

3.1.2 Tests composed of polytomous items 

While person-fit analysis involving test composed of dichotomous items has been 

carried out extensively, there has been considerably less research involving tests 

composed of polytomous items, particularly in the area of using person-fit analysis to 

identify aberrant respondents. Both non-parametric and parametric approaches have 

been used to study misfitting persons. 

Non-parametric indices 

The generalised G  indices for polytomous items 

Emons (2008) discussed how the concept of Guttman error for dichotomous items 

could be extended for polytomous items. It is assumed that a score on an item is 

associated with the number of steps that have been successfully past when 

answering the item. The introduction of the concept of item steps makes it possible 

to transform a response or score on an item into an item response vector composed 

of scores on a series of dichotomous items. The number of elements in the item 

response is the maximum available score on the item M. Each element in the item 

response vector represents a step. If a score on the item is m, then the vector will 

have 1s for the first m elements and 0s for the M-m elements. When all the item 

response vectors are added for a person, an overall response vector is created. To 

develop the Guttman index for these dichotomous items, the steps in all the items 

must be ordered according to their difficulty to form the final response vector for the 

person. The difficulty of a step in an item is defined as the proportion of respondents 

with a score equal to or higher than the step score on the item. The item steps within 
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an item are always ordered. Once the item steps are ordered, the Guttman index 

(the number of Guttman errors) for person n (
PG ) can be calculated in the same 

way as that used for dichotomous items: 

  


 




1

1 1

1

)1(
M MJ

i

J

ij

ji

P yyG        (22) 

where: 

 iy  = the value of element i (or step) in the response vector ),...,,( 21 MJyyyy   

 MJ  = the total number of item steps or the length of the response vector y  

When the response pattern is a Perfect Guttman Pattern (ie the easiest items were 

answered correctly, without any partial scores), then the value of 
PG  is 0. When all 

the items in the test are dichotomous items, 
PG  reduces to the index for 

dichotomous items. 

Emons (2008) also extended the normalised Guttman index for dichotomous items to 

polytmous items by dividing 
PG  by the maximum possible Guttman errors 

)|max( XGP
 for a given test score   
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i iyX
1
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The values of 
P

NG  vary from 0 (perfect Guttman pattern or no misfit) to 1 repsenting 

extreme misfit. Emons suggested that since the item steps in the response vector 

are structurally dependent, )|max( XGP
 cannot be expressed in closed form. He 

developed a recursion algorithm to estimate it. 

The generalised U3 person-fit statistic 
PU3  for polytomous items 

Emons (2008) also proposed a generalised form of the U3 index for polytomous 

items (
PU3 ) which is defined as follows: 
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 k̂  = the difficulty of step k 
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Values of 
PU3  vary from 0 (suggesting perfect fit) and 1 (indicating extreme misfit). 

As with the calculation of the normalised Gutmman index for polytomous items, 

)|max( XW  and )|min( XW  cannot be expressed in closed form and can be 

calculated using a recursion method (Emons, 2008).  

Parametric indices 

The Rasch model was originally developed to analyse tests composed of 

dichotomous items (see Rasch, 1960) and has been extended subsequently for 

analysing polytomous items. These extended Rasch models include Andrich’s 

Rating Scale Model (RSM), Masters’ partial credit model (PCM), and other models 

(see Andrich, 1978; Masters, 1982; Wright and Masters, 1982; Muraki, 1992). The 

PCM states that, for a polytomous item with a maximum available score of m  (the 

number of score categories minus 1), the probability ),( xP   of an examinee with 

ability   scoring x on the item can be expressed as: 
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where k  is the location of the kth step on the latent trait continuum and is referred to 

as the item step parameter associated with a score category (also frequently referred 

to as step difficulty or threshold). However, k  cannot be interpreted as the difficulty 

of scoring a score of k  on the item. ),( xP   is also frequently referred to as category 

response function (CRF) or item category probability function (CPF). The step 

parameter k  represents the location of the score category on the ability continuum 

beyond which the probability of achieving a score of k  is higher than that achieving a 

score of 1k . The PCM reduces to the Rasch model for dichotomous when the 

number of response categories is two. 

The generalized partial credit model (GPCM) proposed by Muraki (1992) represents 

an extension of the 2PL model for dichotomous items to polytomous items. The 

model is also an extension of the Maters’ partial credit model by introducing a 

discrimination parameter for items. In the GPCM, the probability ),( xP   of a test-

taker with ability   scoring x on the item can be expressed as: 
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where a is the item discrimination parameter. When the maximum score on the item 

m is 1, the GPCM becomes the two-parameter logistic model. When the item 

discrimination parameter is 1, the GPCM reduces to the PCM. 

As suggested by Sung and Kang (2006), the graded response model (GRM) 

proposed by Samejima (1969) can also be viewed as a generalization of the 2PL 

model for dichotomous. The model uses the 2PL item response function to model 

boundary characteristic curves across score categories or the cumulative probability 

of a response higher than a given category x. The probability of scoring a specific 

score x, )(xP , on the item is then calculated as the difference between the 

cumulative probabilities of achieving the score below the specified score )(*

1 xP  and 

the specified score )(* xP : 
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As indicated by Sung and Kang (2006), the GRM is different from the GPCM and 

PCM in that it requires a two-step process to compute the conditional probability for 

a test-taker responding in a particular category. 

The standardised likelihood index 
p

zl  for polytomous items 

The standardised likelihood index for dichotomous IRT models discussed above can 

be extended to polytomous IRT models such as those presented above. Drasgow et 

al. (1985) provided a general form of the index for polytomous items (see also 

Sinharay, 2015b): 
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where: 



Statistical techniques for studying anomaly in test results 

 

23 
 

 

    



















 

 

j k l

jljkjkjljk

p

J

j

m

k

jkjk

p

J

j

m

k

jkj

p

PPPPPl

PPlE

Pkl

j

j

)(/)(log)(log)()()var(

)](log[)()(

)](log[)(

0

1 1

0

1 1

0







 

Where jm  is the maximum score of item j, and )(kj  is an indicator function which is 

1 if k=j and 0 otherwise. 
p

zl  will be asymptotically normally distributed. Sinharay 

(2015b) recently discussed this statistic for tests containing a mixture of dichotomous 

and polytomous items. 

Other person-fit statistics for the Rasch model 

For the partial credit model, person-fit statistics similar to those for the Rasch model 

based on residuals can also be derived. The weighted and unweighted person-fit 

statistics are defined as follows: 
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where the expected score on the item and the variance are calculated from: 
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These person-fit statistics have been widely used as general diagnostic tools to 

assess person model fit (see Wright and Masters, 1982). 

Cumulative sum (CUSUM) statistics 

van Krimpen-Stoop and Meijer (2002) and van Krimpen-Stoop et al. (2010) extended 

the CUSUM procedure for tests composed of polytomous items used in computer 

adaptive tests. The residual for a person with ability   on a polytomous item i with 

1m  response categories contained in a test with J items is calculated from: 
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where ix  is the observed score and ),( jP   is the probability of scoring a score of j 

on the item with a maximum score of m described by a polytomous IRT model such 

as the PCM and GPCM. The CUSUM statistics defined for dichotomous items 

discussed previously can be similarly defined for polytomous items and used for 

identifying aberrant response patterns. 

A person-fit index derived from factor analytic models 

Ferrando (2007, 2009; also see Clark, 2012; Clark et al., 2014) discussed the use of 

factor analytic models to study misfitting respondents. For a one-factor analytic 

model, the score on item j from person n, njX , is modelled using a linear function: 

 njnjjnjX    

where j  and j  are the item parameters, and n  is a factor score and nj  is the 

random error with variance 2

 . The expected score of njX  on the item is njj   . 

A residual based person-fit statistic can be defined as: 
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When sample estimates are used, lco  is distributed as 
2  with J-1 degree of 

freedom. The one-factor analytic model was subsequently extended to multiple 

factors. For a K-factor model, a person-fit statistic can be similarly defined: 
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nMlco  is also 
2  distributed, with the number of freedom being J-K. Clark et al. 

(2012, 2014) discussed the potential application of the difference in person-fit 

statistics between the one-factor model and a two-factor model as a person-fit 

statistic: 

 nndiffn MlcolcoMlco ,        (33) 

This statistic should also be 
2  distributed with a degree of freedom of 1. Clark et al. 

(2014) used this statistic to detect cheating due to prior knowledge of portions of 

items in a test. They argued that if a subset of items in a test had become 
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compromised and a subset of test-takers took the test with prior knowledge of these 

items, additional covariance amongst these compromised items for cheating test-

takers may result in improved fit at the person level for individuals who engaged in 

misconduct when a second factor is added to the initial unidimensional model. 

3.1.3 Performance of person-fit statistics 

The power (the detection rate) and accuracy (Type I error rate or false positive rate) 

of an aberrant detection statistic under a nominal Type I error rate or   level defined 

by a theoretical or empirical critical value are normally studied using simulations 

under different conditions (see Meijer and Sijtsma, 2001; Karabatsos, 2003; 

Thiessen, 2008). The power of a person-fit index can be affected by a number of 

factors such as the ability distribution of the test-takers involved, the difficulty 

distribution of the items, the discrimination distribution of the items, test length, the 

types of aberrant responses, the proportion of misfitting items, and the proportion of 

aberrant respondents (see Meijer and Sijtsma, 2001; Karabatsos, 2003; Emons, 

2008; Tendeiro and Meijer, 2013; Meijer and Tendeiro, 2014). Meijer and Sijtsma 

(2001) and Meijer and Tendeiro (2014) also indicated that, the power of person-fit 

statistics to detect aberrant response patterns increases with increasing item 

discriminations, test length, and a large spread of item difficulties. 

Using simulations, Meijer (1994) demonstrated that the power of the G indices varied 

from 24% to 100% under different simulation conditions. He found that these 

Guttman person-fit statistics can be as powerful as or even better than some more 

complex person-fit statistics in detecting aberrance associated with cheating and 

guessing. Both G and 
*G  are easy to calculate and interpret. Thiessen (2008) 

suggested that the disadvantages of the Guttman’s G statistics are that each 

Guttman error is given equal weight and there is no consensus as to the critical 

values that should be used to classify aberrant score patterns. 

Using the 3PL model and simulations, Drasgow et al. (1987) looked at the 

performance of a range of person-fit indices in detecting aberrant response patterns 

and found that the standardised likelihood index zl  is one of the most effective 

indices in detecting aberrant test-takers, with detection rates varying from 35% to 

98% at a false alarm rate of 5%, depending on the simulated conditions. Similarly, 

using the Rasch model and simulations, Li and Olejnik (1997) compared the 

performances of a range of person-fit statistics including zl , the standardised 

extended caution indices SECI2 and SECI4, and the standard normal form of the 

Wright’s W and U indices. They found that these indices performed equally well 

regardless of the type of misfit and test length, with average detection rates varying 

from 37% for a 30-item test to 51% for a 60-item test. In their study, the Type I error 

rates or false positive rates were less than the nominal level of 5% used. The zl  

index was recommended for detecting spuriously high response patterns. Thiessen 
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(2007) also used simulation studies to investigate the effectiveness of U, W, zl  and 

MCI in detecting cheaters and found that MCI was able to detect 86% of simulated 

cheaters. For the other three parametric indices, the detection rates were slightly 

less, varying from 66-80%. The standardised likelihood index zl  was found to 

produce the lowest false positive rate. Results from simulations by Armstrong et al. 

(2007) indicated that the detection power of the zl  index was largely hinged on test 

characteristics, particularly test difficulty. They therefore suggested that it should be 

used with caution in an operational testing environment. 

Karabatsos (2003) compare the performance of 36 non-parametric and parametric 

person fit statistics in detecting five types of aberrant response patterns for tests 

composed of dichotomous items: cheating, careless responding, lucky guessing, 

creative responding, and random responding under different conditions. The study 

included different percentages of aberrant examinees and test length. It was found 

that the sensitivity of these indices was affected by the percentages of simulated 

aberrant respondents. The most effective five person fit-statistics in detecting 

aberrant-responding persons were found to be the index T

nH , the C index, the MCI 

index, the U3 index, and the )(D  index. Further, TH  out-performed the parametric 

)(D  and the C and MCI indices. The U3 index also outperformed many well-known 

parametric person-fit statistics. Huang (2012) compared a range of parametric and 

non-parametric person-fit statistics and found that non-parametric indices performed 

better than IRT-based parametric indices. Tendeiro and Meijer (2014) recently 

compared different group-based non-parametric statistics for dichotomous items and 

concluded that, for a given Type I error rate, T

nH , followed by U3, and C, had 

generally the highest power to detect misfitting response vectors. 

Armstrong and Shi (2009) found that the power of LRCUSUM  varied from 47% to 

100% in detecting aberrant respondents, depending on the simulation conditions and 

the specified   level, and the Type I error rates were close to the   values. They 

also found that the proposed CUSUM procedure outperformed considerably other 

selected model-free non-parametric statistics. The distribution of CUSUM statistics 

can also be used to examine where the aberrant behaviour happened in the 

response process. 

Emons (2008) used simulations to compare the performance of the three non-

parametric person-fit statistics 
PG , P

NG  and 
PU3 , and the parametric statistic 

p

zl  for 

tests composed of polytomous items and found that the detection rate of these 

indices varied from slightly over 10% to nearly 80% at the 0.05 significance level, 

depending on the type of aberrant responses and the number of misfitting items. The 

non-parametric statistics performed almost as well as the parametric statistic in 

many situations. For a real dataset, he found that the correlations between these 

non-parametric indices ranged from 0.88 to 0.89. 
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Using simulation studies, Clark et al. (2014) found that diffMlco  performed better than 

lco  in identifying cheating persons. The detection rate of diffMlco  varied from 12% 

to 89% at the 5% significance level, depending on the simulated conditions. The 

Type I error rate was generally small than the nominal value of  . They observed 

that person-fit statistics like lco  measure the difference between observed and 

expected performance on an item. However, the difficulty of the items which will 

influence the expected scores is estimated from the observed responses from all 

test-takers. If a larger proportion of cheaters are present, their influence will make 

the exposed items to become easier than they should, which will result in smaller 

residuals when the observed performance on the items is compared with the 

expected performance. This will reduce the power of residual-based person fit 

statistics like lco . The lco  difference method seems to be more robust compared 

with the lco  approach. They further suggested that increasing the proportion of 

cheaters can improve performance of the lco  difference method when exposed 

items have a wide range of difficulty, since more cheaters will help produce better 

estimates for the second factor. 

3.1.4 Practical applications and computer software 

A large number of person-fit indices have been developed and used operationally. 

They vary in their power to detect different types of aberrant responses. The 

situation is further complicated by the fact that even for the same type of aberrant 

behaviour, there may be several indices available which may perform differently. As 

indicated by Tendeiro and Meijer (2014), the existence of a large number of person-

fit statistics is useful but can also cause confusion as to which of them should be 

used when a decision to select the best statistics is needed. Tendeiro and Meijer 

(2014), Meijor et al (2015) and Tendeiro et al. (2016) attempted to provide practical 

guide for selecting person-fit statistics. The criteria for selecting a person-fit statistic 

would include: 

 high detection power 

 lower false positive rates 

 interpretability of the critical values 

 practicality in terms of resources required to produce the statistic 

It is worth noting that, all person-fit statistics, particularly non-parametric person-fit 

statistics, are generally sensitive to violations against the Guttman model (Meijer and 

Tendeiro, 2014). IRT based parametric indices will also be sensitive to violations of 

model assumptions. When comparing the performance of the non-parametric indices 

and parametric indices, Karabatsos (2003) observed that parametric fit statistic uses 

the dataset twice, once for the estimation of the model parameters to construct the 

predicted response patterns and once again to measure its fit to the same predicted 

response patterns. He suggested that parametric person-fit statistics, based on IRT 
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model parameters, suffers from this dependence between data and parameter 

estimates. Non-parametric person-fit statistics on the other hand, circumvent such 

dependence, which may explain why some of the non-parametric person-fit indices 

performed better than some of the well-known parametric fit statistics. The 

advantage of non-parametric approaches is that the underlying non-item response 

theory model is less restrictive with respect to the data than their parametric 

counterparts (Emons, 2008). Tendeiro and Meijer (2014) suggested that a high 

percentage of respondents simultaneously flagged by several person-fit indices 

could be an indication of aberrant response behaviour. 

Tendeiro (2015) has developed an R Package which implements a range of non-

parametric and parametric person-fit statistics for tests composed of both 

dichotomous items and polytomous items. These are listed in Table 1 below. 

Table 1 Person-fit statistics available in the R Package PerFit (extracted from Meijer 

et al, 2015) 

Type of 

statistics 
Statistics References 

Type of data 

Dichotomous Polytomous 

Non-

parametric 

pbisr.  Donlon and Fischer (1968) X  

C Sato (1975) X  

nGG,  
van der Flier (1980); Meijer 

(1994) 
X  

A, D, E Kane and Brennan (1980) X  

U3, ZU3 van der Flier (1982) X  

*C  Harnisch and Linn (1981) X  

NCI 
Tatsuoka and Tatsuoka 

(1982, 1983) 
X  

TH  Sijtsma (1986) X  

PG  Molenaar (1991)  X 

P

NG  
Molenaar (1991), Emons 

(2008) 
 X 

PU3  Emons (2008)  X 

Parametric 

zl  Drasgow et al. (1985) X  

P

zl  Drasgow et al. (1985)  X 

*

zl  Snijders (2001) X  
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3.2 Answer copying and similarity analysis 

Answer copying involves a test-taker (the copier) copies answers from another test-

taker or other test-takers (the source/s) (see Zopluoglu, 2017). The methods 

discussed in this section are for test composed of multiple choice questions (MCQs). 

Most of the statistics used for detecting answer copying are based on the 

comparison of the amount of overlap or similarity in answers between two test-takers 

with the normal amount that would be expected if the two test-takers were known to 

have answered the questions independently of each other. The overlap can be 

focused on identical incorrect answers or both incorrect and correct answers. If the 

observed amount of overlap is significantly different from the expected normal 

amount, copying is assumed to have happened. Most copying indices involve the 

estimation of the probabilities of the copier to select particular answer alternatives of 

the items in the test that the source selected. Both CTT and IRT models have been 

used in deriving copying indices (Wollack, 1997, 2004, 2006; Sotaridona and Meijer, 

2003), with the critical values established empirically for CTT and theoretically for 

IRT. When the copier and the source are not specified, the copying index is referred 

to the similarity index. 

Some indices may be more effective in detecting copying than others, depending on 

the types and amount of copying. Wollack (2006) suggested there are broadly three 

types of copying: 

 random copying where the copier copies the answers to items randomly from the 

source(s) 

 strings-based copying where the copier copies consecutive strings of items from 

the source 

 mixed copying where a combination of random and strings-based copying is used. 

Wollack classified copying indices into two broad categories, depending on the way 

the responses are used: 

 indices that incorporate information from only incorrect responses 

 indices that use information from all responses 

3.2.1 Answer copying and similarity indices 

Angoff’s B  index and H  index 

Angoff (1974) proposed to use the B  index to study the number of identically 

incorrect answers between the copier and the source, in comparison with those of 

test-takers with similar values for the product on incorrect answers between two test-

takers (see also Wollack, 2006). The calculation of the B  index involves the 

following steps (Wollack, 2006): 
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 for the alleged copier and the source, work out the number of identical incorrect 

items, which is denoted as ijQ , and the product of their number of wrong answers 

jiWW  which is used as the conditioning variable 

 divide the dataset into strata such that the test-takers within a stratum are 

homogeneous with respect to the conditioning variable jiWW  

 for the stratum to which the copier and the source belong, work out the mean of the 

Q  values of all pairs of test-takers and their standard deviation, denoted as 
jiWWQ  

and 
jWiWQS , respectively. The B  index is defined as: 

 

jWiW

ji

Q

WWij

S

QQ
B


         (34) 

B  therefore assesses the departure of the observed number of identical incorrect 

answers between the copier and the source from the mean of pairs of test takers 

with similar values of jiWW . It is assumed that B  follows the standard normal 

distribution. Large values of B  would be an indication of answer copying. 

Another index proposed by Angoff (1974) is the H  index which is used to study the 

magnitude of the maximum number of identical incorrect or omitted items in any 

string of identical responses in comparison with those of test takers with similar 

number of omitted or incorrectly answered items. The calculation of the H  index 

involves (see Wollack, 2006): 

 for the alleged copier c and the source s, work out the maximum number of identical 

incorrect or omitted items in any string of identical responses, which is denoted as 

CSK  

 the dataset is partitioned into raw score groups. The group which contains the one 

with the higher raw score of c and s is used as the comparison group 

 for the comparison group, work out the mean of the K  values of all pairs of test-

takers and their standard deviation, denoted as K  and S , respectively. The H  

index for C and S is defined as: 

 





S

KK
H CS         (35) 

It is also assumed that H  follows the standard normal distribution and large values 

would suggest answer copying. 

The K  indices 

Holland (1986) proposed a statistic, the K -index, to assess the degree of unusual 

agreement between the incorrect answers on a multiple choice question test of two 
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test-takers, the copier (c) and the source (s). The following steps will need to be 

taken to calculate the K  index (see Sotaridona and Meijer, 2002): 

 determine the group of test-takers with the same number-incorrect score as the 

copier (subgroup c ). Denote the total number of test takers in the group as cn   

 for each test-taker in group c , determine the number of items that match the 

incorrect answers of the source 

 for a copier c in group c , denote his/her number of matched incorrect answers with 

the source as ccm   and the number of test-takers whose number of matched 

incorrect answers with the source is greater than or equal to ccm   as n . The K  

index for the copier is calculated as the ratio of n  to cn  : 

 
c

c
n

n
K




          (36) 

That is the K  index is defined as the proportion of test takers in subgroup c  whose 

number of matched incorrect answers with the source is greater than or equal to that 

of the copier. 

The logic of using cK  as an indicator of copying is that when K  is very small, there 

is statistical evidence that test taker c copied from the source s. As Sotaridona and 

Meijer indicated that the reason for K  to be calculated conditional on the number of 

incorrect scores of the suspected copier is that the number of matching incorrect 

scores generally depends on the ability levels of c and s. the number of matched 

incorrect answers will be small when either of the copier or the source or both have 

high abilities (with many correct scores). When both test-takers have many wrong 

answers, the matched number of incorrect answers will be large. When the sample 

size is small (for example less than 100), cn   can become small which will affect the 

accuracy of the value of the K  index. For small samples, Holland (1996) suggested 

to use the binomial distribution to approximate the distribution of matched number of 

incorrect answers for a subgroup. For subgroup c , calculate the mean of empirical 

agreement of incorrect answers between the members in the group and the source: 

 
'
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where icm   is the number of matched incorrect answers between test-taker i  in 

subgroup c . Assuming that the number of wrong answers of the source is sw , the 

average percentage agreement between the subgroup c  and the source is: 
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*

cp   is used as the success probability parameter in the binomial distribution. The 

corresponding K  index, which is denoted as 
*K , is defined as the probability of the 

matched incorrect answers greater than or equal to ccm   and is calculated from: 

 gw
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The value of *

cp   is affected by the sample size. When the size is small, its reliability 

declines. Holland (1996, see also Sotaridona and Meijer, 2002) suggested that 
*

cp   

be approximated using a piecewise linear function: 
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where: 

Rr ,...,2,1 . R is the total number of groups each of which contains test-takers 

with the same number of incorrect answers. 

rQ  = the percentage incorrect score of all test-takers with r incorrect answers 

ba,  = intercept and slope parameters 

Sotaridona and Meijer (2002, see also Wollack, 2006) modified the *K  index further 

to produce the 2K  index: 
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which uses a different approach to calculate the probability: 
2

210

*

2 rr QbQbbp 

where 10 ,bb  and 2b  are regression coefficients. Wollack (2006) suggested that the 

main advantage of 2K  over the K  indices is that the former uses information from 

all test-takers to compute the probability while the latter uses information only from 

those with the same number correct score as the source. 

The 2g  index 

The 2g  index index proposed by Frary et al. (1977) compares the number of 

identically answered items by the copier and the source against the expected 

number of identically answered items (see Wollack, 1997). If the answers from the 

source are treated as fixed and the probability of the copier answers item j, )( jSC uP , 

exactly as the source’s answer, jSu , is known, then the expected number of items 
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that C answered identically as the source s, )|( SCS UhE , is the sum of the 

probabilities overall items J in the test: 

 



J

j

iSCSCS uPUhE
1

)()|(  

where CSh  is the observed number of identically answered items, and SU  is the 

response vector for the source S. The variance of the number of matched answers is 

given by: 
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The 2g  index for the pair is defined as: 
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The statistic follows approximately the standard normal distribution. Large values of 

2g  would indicate answer copying. The probabilities of C selecting each alternative 

of an item can be estimated by considering item difficulty and distractor difficulties 

and the ratio of the copier’s raw score to the mean score of all test takers (see 

Wollack, 1997). 

The   index 

The   index proposed by Wollack (1997) is similar to the 2g  index discussed above. 

However, while 2g  is based on CTT,   is based on IRT. Wollack (1997) suggested 

that since CTT item statistics are dependent on the trait levels of the test-takers 

included in the analysis, measures of the expected degree of similarity between a 

pair of examinees depend largely on the performance of the other test-takers on the 

test rather than only the two test-takers of interest. Under item response theory, the 

probability of a test-taker answering a specific item correctly is determined by his or 

her trait level and the characteristics of the item but independent of the other test-

takers who take the test. Wollack also suggested that the various IRT-based person-

fit statistics (such as those discussed before) used to identify aberrant response 

patterns do not depend on the similarity between the suspected copier’s responses 

and those of a neighbouring test-taker and were therefore found to detect answer 

copying poorly. The   index was developed specifically to detect answer copying 

under the IRT framework. 
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Wollack indicated that in investigating answer copying, the concern is not only with 

whether a pair of test-takers jointly answers an item correctly or incorrectly but also 

whether the same answer alternative was selected. This makes the IRT models for 

dichotomous items inappropriate for answer copying analysis. He used the nominal 

response model (NRM) developed by Bock (1972) to describe the interaction 

between the test-taker and an item. Under NRM, the probability, )( ijkP  , of test-taker 

i with ability i  select option k of an MCQ item j is given by the following equation: 
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where: 

 m  = number of alternatives 

 jk  = item intercept 

 jk  = item slope 

For each pair of test-takers for which copying is possible, the number of identically 

answered items (both correctly answered and incorrectly answered) can be counted 

which is denoted as CSh . Treating the responses from the source as fixed and given 

the ability of the copier C  and the properties of the items in the test, the conditional 

probability that the copier selected the alternative k on item j which the source also 

selected is )( CjkP   represented in Equation (40). The sum of the probabilities over all 

J items in the test will be the expected number of identical responses between the 

copier and the source, which is the expectation of CSh : 
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where: 

 SU  = the response vector of the source 

   = the item parameter vectors 

The variance, which is a measure of the variability, of the observed number of 

answer matches CSh  will be: 
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The distribution of CSh  will approach normality as the number of items becomes 

sufficiently large. The   index is defined as: 
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  becomes standard-normally distributed when the number of items is infinity. 

Values of   can therefore be used to evaluate for statistical significance. The large 

the value of  , the more likely the similarity in responses between the two test-

takers resulted from answer copying. 

The 1S  and 2S  indices 

The 1S  index proposed by Sotaridona and Meijer (2003) is similar to the 2K  index 

conceptually (see Wollack, 2006). However, 1S  uses the Poisson distribution to 

model the probability of match on an incorrect answer between the copier and the 

source. It also uses a log-linear model to estimate the probability parameter in the 

Poisson distribution for each group: rr w10)log(   , where rw  is the number 

incorrect score for test-takers in group r. Given the number incorrect answer of the 

source Sw , if the number of matched or identical incorrect answers between the 

copier c and the source c is CSw , the probability of the matched incorrect answers 

that are greater than or equal to CSw  is the 1S  index for the pair: 
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Small values of 1S  would suggest answer copying. 

Sotaridona and Meijer (2003) extended the 1S  index to incorporate information on 

matched or identical correct answers between the copier and the source into a new 

copying index, the 2S  index. They argued that excluding the number of matched 

correct answers in the analysis of copying assumes that the copier knows all the 

correct answers to items both the copier and the source answered correctly, which 

may not always be true. They suggested that a test-taker may get a correct answer 

by copying or guessing. The K  indices and the 1S  index are insensitive to copiers 

who only copy the correct answers and 2S  overcomes this limitation. For the 1S  

index, the number of matched incorrect answers CSw  between the two test-takers is 
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used in the calculation. The formulae used to calculate the 2S  index is the same as 

that used for calculating the 1S  index. However, both the matched incorrect answers 

and the matched correct answers are used. The statistic used is CSm  which is 

calculated as the sum of the matched number incorrect answers CSw  and the 

matched number correct answers weighted by the likelihood of the match (see also 

Wollack, 2006). For a test-taker rj  in group r (with r number of incorrect answers), 

CSm  is estimated from the following equation 
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where *i  denotes correct answers for item i , )( *iiS uuI   is an indicator function which 

equals 1 if the source S answered item i correctly and 0 if incorrectly, and 
rijP  is the 

percentage of test-takers in group r who match S on a correctly answered item i: 
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where )( iSij uuI   is also an indicator function which equals 1 if test-taker j and the 

source S answered identically to item i and 0 otherwise, and rJ  is the total number of 

test-takers in group r. 1d  and 2d  are calculated from: 
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where k is the number of item categories. The 2S  index is defined as: 
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2S  follows a Poison distribution for which the parameter   is estimated using the 

same loglinear model as that used for 1S . Small values of 2S  would suggest answer 

copying. 

The Variable Match-Indices (VMIs)   and 
*  

Belov (2011) proposed two indices, the Variable Match indices, which can be used to 

detect a variety of answer copying, including blind copying where two test-takers 

provide the same responses to different items that are in the same positions and 
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shift copying where the copier produce a response string to a set of items which is 

the same as the response string from the source but the positions of the items are 

different between the copier and the source (also see Bliss, 2012). These indices 

can be used in situations where the test is composed of two parts, an operational 

part which contains the same questions for all test takers and is used to generate 

test scores, and a variable part which may contain different items for different test 

takers. The test-takers will not know which part is operational and which part is 

variable. It is the responses to the items in the variable section that are used to 

investigate potential answer copying. A match happens when the potential copier 

answers incorrectly to item i of the copier’s variable part and the potential source 

selected the same answer to i+j of the source’s variable part. 

For two test-takers c, the potential copier, and s, the potential source, taking a linear 

test that is divided into two parts, the operational part (T) and the variable part (V), 

define two random variables: 
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where:  

cw  = number of incorrect responses of c to the operational part T 

sw = number of incorrect responses of s to the operational part T 

cV = collection of items in the variable part of c 

sV  = collection of items in the variable part of s 

The VM-index  , which is conditioned on cw  and sw , is defined as: 
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where the summation parameters ul   make the VM-index sensitive to different 

types of coping: 

When 0 ul ,   is sensitive to a blind-copy event. 

When 0 ul ,   is sensitive to a negative shift-copy event. 

When ul 0 ,   is sensitive to a positive shift-copy event. 

When ul  0 ,   is sensitive to all of the above events. 
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Belov used Monte Carlo method to estimate the critical values of the empirical 

distribution of   for a given significance level  . 

Belov introduced an extension of the VM-Index, VM-Index* * , which is more 

conservative than the VM-Index (see also Bliss, 2012). This index uses the following 

two random variables: 
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The index 
*  is defined as: 
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Wesolowsky’s Z  similarity index 

Wesolowsky (2000a) proposed a copying index which represents a modified version 

of the 2g  index proposed by Frary et al. (1977) and the   index proposed by 

Wollack (1997) discussed above. Calculation of this index involves: 

 work out the number of identical answered items in the test between two test-takers 

 estimate the probability of a test-taker answering an item correctly 

 estimate the probability distribution of the number of identically answered items by 

the two test-takers 

The probability of test-taker i who answered item j correctly, ijp̂ , is estimated from 

the following equation: 

 ii aa

ij rp
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The parameter ia  is found by solving the following equation: 
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where J  is the number of questions in the test, and ic  is the proportion of questions 

answered correctly by test-taker i.  
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Given the observed number of matched items between two test-takers i and k, ikM , 

the expected value, ik̂ , can be estimated from the probabilities that the two test-

takers can answer each item in the test correctly or select specific wrong options: 
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where tjŵ  is the probability that, given the answer is wrong, wrong choice t is chosen 

on item j, and jv  is the number of wrong choices (distractors) of the item. The 

variance of the distribution of matched number of answers is estimated from: 
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The Z  index for the pair (i and k) is calculated from: 
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jkZ  follows the standard normal distribution, and large values would suggest answer 

copying between the two test-takers. Compared with the 2g  and   indices, this 

index also aims to reduce Type I error. 

The 4M  similarity index 

The similarity index 4M  proposed by Maynes (2005, see also Wollack and Maynes, 

2011; Maynes, 2014a) decomposes the number of matching answers between two 

test-takers into two parts, with one related to the number of identical correct answers 

and the other the number of identical incorrect answers. It uses a generalised 

trinomial distribution to derive the exact distribution of the number of identical correct 

and incorrect answers. 

The probability for a test-taker to select a particular answer alternative for an item 

depends on his/her ability and the item characteristics of the item and is modelled 

using the Bock’ (1972) nominal response model. Under the assumption that two test-

takers, j with ability j  and s with ability j , work independently of each other when 

answering the item, the joint probability that j select a  and s select a  on the same 

item i is given by the product of the probabilities 
)( jjia


 and 

)( ssia


  of them 

selecting their answers independently: 
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The probabilities for the two test-takers jointly to select the correct answer ijsP , the 

identical incorrect alternative ijsQ , and different alternatives ijsR  are: 
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where kr  denotes the correct alternative (the key), )(I  is an indicator function which 

equals 1 if the statement in the parentheses is true and 0 otherwise, and A is the 

number of alternatives. The probability ),(, nmf jst  that the two test-takers have m 

matching correct answers and n matching incorrect answers on t items in the test 

can be found using a recursion approach: 

 ),()1,(),1(),( ,1,1,1,,4 nmfRnmfQnmfPnmfM jsttjsjsttjsjsttjsjstjs    (48) 

subject to the boundary conditions that 
1)0,0(,1 jsf
 when 0 nm  and 

0)0,0(,1 jsf
 

otherwise. Because the assumption on which the calculation of the statistic is based 

is that the two test-takers answered the two questions independently, small 

probability of the matched correct and incorrect answers would represent unlikely 

rare event. When 
),(,,4 nmfM jstjs   is less than 0.05, one could conclude that the 

probability of such a match by chance is small and therefore some kind of collusion 

between the test-takers is indicated. To control Type I error, the researchers 

suggested that 4M  is corrected by a multiplication factor of 2/)1( N  where N is 

the total number of test-takers. Pairs with 05.04 M  are flagged. 

3.2.2 Performance of copying and similarity indices 

Wollack (1997) compared the performance of the   and 2g  indices in detecting 

answer copying under different simulation conditions in terms of type of copying, 

percentage of items copied, proportion of test-takers engaged in copying and test 

length. Three types of copying was considered: random copying, difficulty-weighted 

copying and random string copying. His study found that   was considerably better 

at controlling Type I error than 2g , with the Type I error rates for   generally below 

the specified nominal Type I error rates while that for 2g  substantially inflated (above 

the nominal values) under the simulation conditions. It was found that the power of 

  increases with test length and percentage of items copied and is insensitive to the 

type of copying. For a test of 80 items, the study found that the detection rate of   

was about 58% at 05.0  when the proportion of items copied was 20%. 
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Wollack (2006) also used simulations involving manipulating responses from a real 

test to investigate the Type I error rate and detection power of eight copying indices. 

These included B, H,  , 1S , 2S  and 2K , and pairs of these indices. The types of 

copying considered in this study included random copying, string copying and mixed 

copying. Results from this study indicated that for the majority of these indices and 

their pairs, the Type I error rates were smaller than or similar to the nominal   levels 

(0.0005, 0.001, 0.005 and 0.01 respectively). The detection power of the indices 

varied substantially from 0% to over 90%, depending on the Type I error rates, 

percentages of items copied, test length and type of copying. It was found that for 

most of the simulation conditions and copying types,   and the *H  ( *H  is a 

revised H index with critical values derived empirically) paired index out-performed 

the other indices, with   being particularly powerful in detecting random copying and 
*H  in detecting strings copying. Studies carried out by Zopluoglu (2016a) 

indicated that 𝜔, the K-indices, 1S  and 2S  performed similarly for the datasets he 

analysed. 

Belov (2011) compared the performance of three statistics, the K-index (K) and the 

Variable Match-Indices (  and 
* ) in detecting blind copying and shift copying. His 

study indicated that, when slightly over 20% of the test-takers were involved in 

copying, the Type I error rates for these indices were generally below the nominal   

values. When the proportion of test-takers involved in copying was small,   and 
*  

had better control of the Type I error rates. The detection rates of these indices 

varied, depending on the proportion of items copied.   and 
*  generally had higher 

detection rates than K at all   values. In the case of blind or random copying, the 

detection rate was slightly below 70% for K, over 90% for   and slightly over 80% for 

*  at 05.0  when the proportion of items copied was 30%. 

Simulation studies carried out by Wesolowsky (2000a) and Maynes (2014) indicated 

the two similarity indices ikZ  and 4M  generally had a Type I error below the nominal 

  level. 

3.2.3 Practical applications and computer software 

Many of the answer copying indices are sensitive to a range of factors involved in 

copying such as the nature of copying, the proportions of items being copied, test 

length, the proportions of test takers involved in copying. For practical applications, 

Wollack (2006) suggested that a straightforward approach is needed to select the 

index as the type and extent of copying is normally not known. An approach that 

possesses a good power and small Type I error rates for a range of possible copying 

conditions would be preferred. 
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Wollack (2006) suggested that many of the existing available indexes lack sufficient 

power at small   levels or when the amount of copying is relatively small. His work 

explored the utility of using multiple copying indexes in tandem to detect different 

types and amounts of answer copying. The results of his study suggest that using 

the   and the revised H index ( *H ) indices together may help improve power in 

these two areas without compromising the power in other conditions where power is 

already adequate. He concluded that   is the index of choice to detect random 

copying and suggested that *H  is generally most powerful to detect strings 

copying. If the items copied were small, *H  was powerful in detecting copying. He 

suggested that   and *H would be good options for most applications. He also 

indicated that although *H  may be the best index in certain situations such as those 

involving, to a certain extent, strings copying, it however appears to be a poor choice 

when copying is dominated by random copying. 

Zopluoglu (2016b) has developed an R packages that can be used to estimate a 

range of copying indices from test response data for tests composed of multiple 

choice questions. These include: 

 the   index 

 K index and its variants 

 the 1S  and 2S  indices 

 the generalised binominal test 

Wesolowsky (2000b) also developed the computer software SCheck to calculate the 

similarity index ikZ  he proposed. 

3.3 Analysis based on comparison of performances on two subsets 

of items in the test 

In situations where a test is constructed into sections and a particular section (or 

sections) may be prone to malpractice, the relationship between scores on different 

sections may be used to identify potential aberrant test-takers. This is different from 

person-fit statistics or copying indices discussed previously where the responses to 

individual items are examined for inconsistency. These indices may be used to 

detect aberrant responses associated with a range of behaviours such as answer 

copying, answer changes, item pre-knowledge, and inappropriate scoring. 

Differential person functioning analysis 

Smith and Davis-Becker (2011) proposed the use of differential person functioning 

(DPF) analysis for detecting cheating associated with prior knowledge of a proportion 

of the items in a test. DPF occurs when there are interactions between individual 

test-takers and classification of items in the test. DPF analysis is a way of examining 

the response behaviours of test-takers. The existence of DIF is a violation of 
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measurement invariance which constitutes an important aspect of validity. The 

fundamental assumption that DPF analysis can be used to identify cheating person 

is that a person’s ability measure estimated using one set of items in the test should 

be similar to that estimated using the other set of items. If the ability estimate from 

the set of items prone to cheating is higher than that from the other set of item 

significantly, then the person has potentially behaved inappropriately. Smith and 

Davis-Becker conducted DPF analysis using the Rasch model, which involves: 

 the items in the test is partitioned into two sets, with one set assumed to be prone 

to prior knowledge or other inappropriate behaviour and the other set not. 

 conduct DPF analysis. There are different ways to do DPF analysis. One way is to 

analyse all person and item together to estimate item and person parameters. Once 

the item parameters are estimated, fix their values and re-estimate the ability of 

individual person on the two set of items. If the difference between the two ability 

estimates is large (greater than 0.6 logits) and is significant, then the person is 

flagged out as potentially inappropriately behaved. 

Smith and Davis-Becker also investigated the sensitivity and stability of using this 

approach to detect potential cheaters with regard to the number of items not prone to 

inappropriate behaviour and the probabilities used to flag individuals. They found 

that with eight security items, a DPF contrast greater than 3, and flagging 

probabilities less than .005, the approach would result in 91% decision consistency, 

1.1% Type I error rate, and a 7.9% Type II error rate. 

The Kullback-Leibler Divergence ( KLD ) index 

Belov et al. (2007) and Belov and Armstrong (2010) proposed to use the Kullback-

Leibler Divergence ( KLD ) index to identify individual aberrant test-takers. Assuming 

that a test can be divided into two non-overlapping parts (R and S) or two sets of 

items. For a test-taker e, his/her posterior distributions of ability can be estimated 

separately based on responses to the two sets of items. These are denoted as )( eR   

and )( eS   respectively. The KLD  between the two distributions of ability is 

computed from the following equation: 
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The distributions of ability is estimated using an IRT model. Relatively large values 

for KLD  indicate significant difference in the test-taker’s performance between the 

two parts. Belov and Armstrong (2010) described the following procedure for 

calculating KLD  numerically: 

 for each individual test-taker, construct his/her response vectors on the two parts: 

),...,,( 11 mrrrr  and ),...,,( 11 nssss  where m and n are the total number of items in the 
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two parts respectively. The elements of the response vectors are either 1 or 0 

(dichotomous items) 

 to facilitate numerical approximation, the ability range is set to [-4,4] which is divided 

into h-1 intervals with h ability values },...,,{ 11 h  (h was set to 27 in their study) 

 Bayesian posteriors for the two parts are computed based on the response vectors. 

The probabilities for the two parts can be approximated using the following 

equations: 
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where )|( kjrP   and )|( kjsP   are the probabilities corresponding to the 

responses given the ability level k  calculated using the IRT model employed 

 the Kullback-Leibler divergence index is calculated from the following equation: 
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The value of KLD  provides a measure of similarity between the two ability 

distributions. Large divergence values indicate a significant change in performance 

between R and S. KLD  can also be used as a person-fit statistic. To be able to use 

KLD  to flag aberrant respondent, a critical value corresponding to a desired level of 

significance   is needed. Such a critical value can be derived by producing the 

distribution of KLD  using all test-takers. KLD  will have high power to detect low-

ability aberrant respondents. 

Belov and Armstrong (2010) used KLD  in combination with the answer copying K-

index to detect answer copying. They found that KLD  had better control of Type I 

error than the K-index. Belov (2014, 2015) also used KLD  to identify aberrant 

behaviour associated with answer changes. 

The Matched Percentile Index (MPI) and the Irregularity Index (IRI) 

Based on the concept from equipercentile concordance used in test equating (Kolen 

and Brennan, 2008), Li et al. (2014) proposed the use of the matched percentile 

index (MPI) based on comparing the performances on parts of the test to identify 

test-takers with aberrant responses. In their study of a test composed of both MCQ 



Statistical techniques for studying anomaly in test results 

 

45 
 

questions and construct response (CR) questions, the scores on the MCQ questions 

and those on the CR questions are equated to derive the MPI, which involved the 

following steps (see Li et al., 2014): 

1. Convert observed MC scores to CR scores by identifying scores observed on 

the MC section that have the same percentile ranks as scores observed on the 

CR section. Compute the standard error of measurement (SEM) and obtain the 

error bands for the converted CR scores for a desired   level (for example, 3

SEM may be desired). Test-takers with converted score outside the error bands 

can be identified. 

2. Similarly, convert the observed CR scores to MC scores by identifying scores 

observed on the CR section that have the same percentile ranks as scores 

observed on the MC section. The SEM is then computed to obtain the error 

bands for the converted MC scores for a desired   level. Test-takers with 

converted score outside the error bands can be identified. 

3. Test-takers who are identified as outliers by both 1 and 2 above are flagged 

and assigned a value of True to the MPI. These test-takers are suspicious of 

test misconduct at the desired   level. 

Li et al. also proposed to use the score on one part of the test (eg the MCQ section) 

to predict the score on the other part (eg the CR section). The predicted score then 

is compared with the observed score to derive the Irregularity Index (IRI). If the 

probability of the difference between the observed score and the predicted score is 

larger than chance, then the test-taker is flagged as an aberrant respondent. The 

following steps are needed to estimate IRI (see Li et al., 2014): 

1. Based on the observed MCQ score of a test-taker, estimate his/her ability 
MC

Calculate the expected CR score and the standard error of estimation (SEE) for 

the test-taker using the ability estimate 
MC  from the MCQ scores and an IRT 

model for polytomous items. 

2. IRI for the test-taker is calculated as the difference between the observed and 

expected CR scores divided by the estimated standard error of estimation. 

3. For a desired   level, test-takers with IRI values above (or below) the critical 

value are flagged as aberrant respondents. 

Simulation studies suggested that the false positive rates were less than 2.5% for the 

two indices and the detection power varied from negligible to over 60%, depending 

on simulation conditions. 

The simple linear regression approach 

Li et al. (2014) also used the simple linear regression method to look at the 

relationship between the difference scores between the MCQ section and CR 

section in the test, Y , and the ability estimates based on scores on the MCQ section 

MC  to identify potential aberrant respondents: 
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 iiMCi baY   ,         (51) 

where i denotes the ith student, ba   and   are the model parameters, and i  is the 

residual. Test-takers with the observed difference score between the MCQ section 

and the CR section outside the 95% interval (or any other specified   level) of the 

predicted value are identified as potential aberrant respondents. If the residuals are 

standardised, test takers with the standardised residuals which are above (or below) 

2 standard deviations (or any other desired values) are flagged. 

Results from simulation studies showed that the power of these methods in 

identifying person with manipulated responses varied from nearly 7% to slightly over 

35%, depending again on the type of manipulation simulated. 

The Z-test statistic for difference scores 

The difference between two sets of scores or ability estimates under the IRT 

framework from two sets of items in the test has also been used to identify aberrant 

respondents using a Z - test (see Guo and Drasgow, 2010; Li et al., 2014; Maynes, 

2014b). If the two test scores or ability estimates are assumed to be measures of the 

proficiency of the test-taker, a significant difference between the two estimates or 

scores at the specified   level would suggest inconsistent performance on the two 

sets of items. If it is assumed that the ability estimate for a test-taker based on the 

first set of items is 1̂  with a standard error of estimation of 1se  and that estimated 

based on the second set of items is 2̂  with a standard error of estimation of 2se , the 

Z - test statistic can be calculated as: 
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If the Z -statistic can be assumed to be normally distributed, for a desired   level, 

the corresponding critical value can be used for identifying aberrant test-takers. 

Results from simulation studies by Guo and Drasgow suggested that the Type I error 

rate was close to the nominal   value of 0.01 used, and the detection power varied 

from negligible to over 95%, depending on the difference in abilities estimated based 

on the two sets of items. 

Use of the conditional probability distribution of score difference 

Maynes (2014b) proposed an IRT approach to evaluate the differences of scores on 

two sets of items in a test to detect aberrant respondents, which overcomes the 

issue with estimating the standard error of score differences and the normality of Z 

score. The idea of this approach is that, for a test-taker, given his/her ability 

estimated using an IRT model, the conditional probability of the difference between 
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the two sum scores on the two sets of items can be computed. For the observed 

sum scores, if this probability is less than the critical value for a desired   level, the 

performances on the two sets of items are significantly different and the test-taker is 

flagged. The procedure involves the following steps: 

 given the ability estimate   of the test taker, the probability of score w  on 1k  

items )|(1 wTk  is calculated using a recurrence relation: 

00)(  and  1)0(),()|()|( 0011   wwTTswTspwT k

s

kk   

where )|(1 spk  is the probability of scoring s  on item 1k  

 the joint probability of scoring x  on the first set of items and y  on the second set 

of items can be calculated from: 

)|()|()|,(  yTxTyxf yx  

 given the observed score yxS   on the overall test, the conditional probability 

distribution of the difference score yxd   can be calculated from: 
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Where the denominator is defined as: 
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 for a given value of  , total score S , score difference d  and the desired   level 

level, if the conditional probability ),|( Sdf   is less than the critical value, the test-

taker is flagged as aberrant. 

Maynes applied this method to identify aberrant respondents associated with 

guessing, collusion or answer copying and performance on anchor items and unique 

items. 

3.4 IRT models embedding aberrant behaviours 

Item response theory models have also been proposed to model aberrant 

responses. The two models discussed here take into consideration item pre-

knowledge and answer changing. 

The Deterministic, Gated Item Response Theory Model (DGM) for item pre-

knowledge 

Shu et al (2013) proposed a model, the Deterministic, Gated Item Response Theory 

Model (DGM), that can be used to detect cheating resulting from item over-exposure. 
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This model classifies test-takers into two groups, cheaters and non-cheaters, by 

conditioning on two mutually exclusive types of items, the exposed items 

(compromised items) and the secure items (or unexposed items). Exposed items can 

be identified based on empirical exposure rates. The secure items are newly 

released. Shu et al. suggested that exposure of items acts like a gate through which 

cheating becomes possible through item pre-knowledge, while the secure items are 

not prone to cheating. The DGM identifies potential cheaters by computing their 

score gain in the exposed items from their scores on the secure items. 

In the DGM, the observed item performance by a test-taker is decomposed into 

either their true proficiency function or a response function due to cheating ability. 

The model can be applied to tests composed of dichotomous items and can be 

expressed as: 
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where: 

),,,,|1( iiicjtjij ITbUP   is the probability of scoring ijU  on item i by test 

taker j with a true ability of tj  and cheating ability of cj  

ib = difficulty of item i 









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jT
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when  ,0

when  ,1
, an indicator variable used to flag cheaters 

When 1jT , j is identified as a cheater. 






item secure,0

item exposed,1
iI , model input defining the status of the item 

)]exp(1/[)exp()|1( itjitjtjij bbUP   , the Rasch model 

)]exp(1/[)exp()|1( icjicjcjij bbUP   , the Rasch model 

When 0jT , the test-takers’ responses to all items in the test are based on their 

true ability t . When 1jT , the test-takers’ response to unexposed items will be 

based on their true ability t  but their responses to exposed items will be based on 

their cheating ability c . Shu et al. used Markov Chain Monte Carlo (MCMC) method 

to estimate model parameters of the DGM. They indicated that the difference 

between the true value of cj  and the true value of tj should be zero when test-taker 

j is not a cheater. If the difference between the true values of cj  and tj  is greater 

than 0 then, the test-taker is a cheater: 
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tjcj   

The estimated values and the associated errors can be tested for significance in 

difference between the two variables. Test-takers can also be classified as cheaters 

or non-cheaters by setting a cut point )10(  cc PP  for the average jT̂  of the 

posterior samples of the indicator variable jT : 
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A higher cut point would indicate a higher confidence that the estimate of the 

cheating ability is greater than the estimate of the true ability. 

Results from simulation studies suggested that, the specificity of the model, the 

percentage of non-cheaters correctly identified, was about 96% for all simulation 

conditions considered and out-performed the zl  index when the proportion of 

cheaters in the sample was 70%. The detection power of the model, or sensitivity, 

was found to be influenced by factors such as proportion of items exposed, the 

effectiveness of cheating and proportion of cheaters. The DGM model had more 

power in detecting effective cheaters showing a high level of score gain (ie, a high 

level of pre-knowledge) than less effective cheaters. With a proportion of cheaters at 

5%, the model was able to detect about 80 % of high-effective cheaters. The 

detection rate was only 48% of high-effective cheaters when the proportion of 

cheaters was 70%. It was found that the DGM model had higher detection power 

than zl  index under all simulation conditions. 

Modelling answer changes 

Linden and Jeon (2012) attempted to model the probabilities of changes made to 

answers of items. Although their model can be applied to both paper and pencile 

based tests and computed based tests, their study focused on erasures made to 

answer sheets. A statistic based on wrong to right (WTR) changes (erasure) was 

proposed to identify unusual changes or aberrant respondents. It was assumed that 

test-takers have enough time to answer all items and review their answers. Two 

different stages of the response process were proposed: the first stage is to produce 

the initial responses to the items; the second (final) stage is to review the answers 

and make changes to the initial answers. Changes can be grouped into three 

categories: 

 the initial correct response from the first stage was replaced by an incorrect 

answer in the second stage (right to wrong – RTW change) 
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 the initial wrong answer was replaced by another wrong answer (wrong to wrong – 

WTW change) 

 the initial wrong answer was replaced by a correct answer (wrong to right – WTR 

change). The statistic E below is the total number of WTR changes in the test 

The following steps are involved to derive the critical value of the statistic: 

 based on the responses from the first stage using the 3PL model (for MCQ test), 

the abilities of the test takers are estimated 

 for the second stage, the abilities of the test takers are fixed as the values estimated 

from the first stage. For a WTR change in the second stage, the probability is 

modelled using a 2PL model as follows: 
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where:  

n = the nth test-taker 

i = the ith item in the test 

1

n  = the ability of test taker n estimated using responses from the first 

stage 

12  and nini UU  = the second and first responses from test taker n on item i 

(1 for a correct and 0 for an incorrect response) 

ii ba 00  and = item parameters of item i 

The item parameters { ia0 } and { ib0 } can be estimated using a subset of the 

final response data constructed by selecting responses being incorrect (ie 

01 niU ) at the first stage. A logistic regression approach was used to 

estimate the item parameters. 

 given the number of WTR changes nE  for test-taker n with known ability on nJ  

changed items with known item parameters, the probability distribution of possible 

number of WTR changes E  on the nJ  items are calculated by the generating 

function with the recursive method proposed by Lord and Wingersky (1984): 

 nEeeE ,...,1,0},Pr{ 
       (56) 

For a given level of significance  , identify e  as the critical value for which the 

probability }Pr{ eE   is less than   from the list of abilities listed from the above 

equation. The test-taker will be identified as an aberrant respondent if the total 

number of nE  is large or equal to the critical value: *

nn eE  . 
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When this model was applied to the responses of 2555 Grade 3 students to 65 

mathematics items, 2.6% of the students were found to have aberrant answer 

changes at 05.0  level. 

4. Analysis of aberrant response patterns and 

unusual test scores for groups 

While research studying aberrant responses at individual test-taker level started in 

the early 1920s, research investigating aberrant responses or anomalous scores at 

class or school levels only received increased attention over the last two decades. 

This partly reflects increasing report in the media of test collusion involving large 

number of individuals at different levels of the system (see Thiessen, 2008; Wollack 

and Maynes, 2011; Plackner and Primoli, 2014). A wide range of statistical 

techniques have been developed and used to identify groups (test centres, classes 

and schools) with anomalous test results. These generally involve the following 

analyses at group level: 

 wrong-to-right (WTR) erasure rates 

 test score and response patterns 

 growth rates over time 

 test score distributions 

 relationships in performance between parts of the test 

 relationships between test performance and other variables 

4.1 Analysis based on wrong to right (WTR) answer changes 

Analysis of wrong-to-right erasures has been used by testing companies or other 

authorities to identify class or school level cheating (see Wibowo et al., 2013; 

McClintock, 2015). Wibowo et al. (2013) described the conventional approach used 

to conduct erasure analysis: For a unit or group (class or school) u, the WTR erasure 

rate uM  is defined as the average number of erasures within the unit: 

 
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Where: 

 kuM ,  = the number of erasures of student k in unit u 

 uN  = the number of students in unit u 

Given the mean erasure rate   and standard deviation   for the population, the 

sampling distribution of samples with a size of uN  will be normally distributed with a 
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mean of   and standard deviation of 
uN/ . For the sample from a specific unit u, 

if the observed mean erasure rate is significantly higher than the population mean for 

a pre-specified level of significance, it is flagged as an outlier and may be subject to 

further investigation for potential test collusion. The significance level is specified as 

the number of standard deviation   that the unit mean departs from the population 

mean: 
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M
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   

  takes integers such as 3, 4 or 5. The conventional method is not appropriate for 

units with small size (eg <100) due to inflated Type I error rates. 

Wibowo et al (2013) used a Poisson-gamma distribution to model the distribution P 

of the number of WTR erasures within a unit to flag units with unusual number of 

erasures: 
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where: 

 ,...1,0m  

 pr,  = model parameters to be estimated and 10  p  

For a unit with the total number of WTR erasures  
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, the distribution of uS  

will also follow a Poisson-gamma distribution with parameters urN  and p : 
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where ...1,0us  is the value of the random variable uS . For a specific unit u with a 

total number of WTR erasures us , if the probability is less than the specified 

significant level  , then the unit is flag as having unusual number of WTR erasures: 

  ),ˆ,ˆ|( uuu NprsSP        (58) 

Results from simulation studies suggested this method had better control of the Type 

I error rates than the traditional method. The Type I error rates were generally 

smaller or close to the nominal   values under the simulation conditions. 
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4.2 Analysis based on response patterns and test scores 

4.2.1 Analysis based on similarity indices 

Use of similarity indices in conjunction with nearest neighbour clustering 

approach 

Wollack and Maynes (2011, 2017) present an approach which could be used to 

detect clusters of test-takers engaged in test collusion. The approach is based on 

analysis of the similarity of answers between test takers and does not require that 

the groups of potentially contaminated examinees be identified a priori and can be 

applied to data from a single test administration. The method can be used to identify 

individuals whose test scores are of questionable validity. 

The method uses the nearest neighbour (or single linkage) clustering in conjunction 

with an answer similarity index used to characterise the degree of similarity in the 

answers between two test takers. The approach involves the following steps: 

 computation of the answer similarity index and set the threshold for flagging pairs 

of test takers with unusual similarities in their answers. The answer similarity 

statistic used by Wollack and Maynes is the 4M  index proposed by Maynes 

(2005) 

 once values of the similarity between all possible pairs of test takers have been 

calculated, aberrant respondents can be identified using the threshold. These 

respondents are then grouped into clusters using the nearest neighbour clustering 

method with their paired similarity data. In this clustering approach, all linked test-

takers are grouped into one cluster. That is, two clusters S and T, which contain 

two sets of test-takers )...,2,1( ss nsN    and )...,2,1( tt ntN   respectively, are 

clustered together if the similarity index ),( ji tsS  for pair ],[ ji ts exceeds the pre-

defined threshold for at least one ],[ ji ts  pair between the two clusters 

The researchers also used a statistical model to simulate the impact of collusion on 

the probability of selecting identical alternatives between two test-takers using 

simulated item response data. Their results indicated that it is possible to recover 

clusters of inter-related test-takers, provided the amount and magnitude of collusion 

is reasonably high. Cluster integrity, which is a measure of the extent to which the 

grouped clusters are interpretable, improves as the cluster effect and the number of 

exposed items increases. The Type I error rates were found generally to be below 

the nominal significance level at 05.0  used in their study. The detection power 

was influenced primarily by the number of items compromised and the collusion 

strength. 
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Use of group average of similarity measures 

The similarity indices such as the Z  and 4M  used for flagging individuals with 

unusual response patterns discussed before can also be used to flag groups with 

unusual number of aberrant respondents. Sotaridona et al. (2014) presented a 

standardised non-parametric matching index nnZ   for flagging pairs of individuals 

taking an MCQ test composed of J items: 
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where: 

)(, nnnn   is test taker pair ),( nn   

   
ik

k knikniinn PPP
1 ,,,,,  is the expected probability that ),( nn   will match on their 

response to item i, k is response category, kniP ,,  and kniP ,,  are the 

response probabilities, and ik  is the number of response categories 

nnM   is the number of matched items 

nnZ   is asymptotically normally distributed and can be used to flag pairs with unusual 

matched number of items for a specified level of significance  . For class u with a 

total number of test-takers uN  and a test-taker n in u, the average of her/his nnZ   

across the test takers in the unit can be calculated as: 
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For this distribution of the average values, the mean u  and deviation u  can be 

calculated. The population mean   of the above statistic and its standard deviation 

  can be calculated. For a specific class with uN  test-takers, if the group mean u  

is significantly greater than the population mean   for a given level of significance 

 , the class is flagged as performed abnormally on the test: 
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uT  is assumed to be asymptotically normally distributed and can be used to flag 

suspicious classes. Sotaridona et al. (2014) subsequently improved the method by 

producing a parametric statistic using Bock’s nominal response model to estimate 

matching probabilities between pairs of individuals. Real test data were manipulated 
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to test the power and the Type I error rate of the index. It was found that the Type I 

error rates were generally below or close to the nominal levels. For a given level of 

 , the detection rate varied with the proportion of items copied. At 02.0 , the 

detection rate was almost 100% when the proportion of items copied was over 40%. 

The parametric approach also out-performed the non-parametric approach. 

4.2.2 Analysis based on person-fit statistics 

Use of factor analysis for grouping aberrant respondents 

Zhang et al. (2011) used Q-type factor analysis to cluster aberrant respondents 

identified using person-fit statistics further into different groups. Each group contains 

respondents with similar aberrant responses. Different groups may show aberrant 

responses on different set of items. Their approach involves the following main 

steps: 

 select person-fit indices from the existing research literature. In their study, they 

used the unweighted U statistic for the Rasch model 

 establish thresholds with simulated data for the chosen person-fit statistics and 

use them to identify test-takers with aberrant item responses 

 assign aberrance scores to items for each test-taker flagged by person-fit indices 

to construct aberrant response vector. In their study, the aberrance response 

vector is constructed using the following procedure: 

 

1. The original response data from all test-takers is analysed using the Rasch 

model for dichotomous items, and the unweighted person fit statistic U  is 

calculated for each person: 
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njV  is the variance of the score of person n on item j. 

2. Set the threshold for 0U  to identify persons with under-fit to the Rasch model 

(ie persons with variability in their item scores larger than the Rasch model 

predicted). 

3. For each item j in the test, the aberrant response score by person n is 

determined using the threshold 0U : 
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The aberrance response vector is }{ njn YY  . 

 Create the matrix of inner product of aberrant response vectors for the identified 

aberrant respondents. The researchers indicated that clustering can be based on 
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the Euclidean distance or dot product between two response vectors. However, 

they argued that while Euclidean distance is more likely to measure the 

dissimilarity between two aberrance response vectors, the dot product measures 

the similarity between the vectors: 

 2
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They chose the dot product approach over the Euclidean distance as the purpose 

was to identify test-takers whose test responses are aberrant and answered in the 

similar ways. The dot product is however insensitive in distinguishing pairs of test-

takers when they answered the same set of items correctly but had various 

patterns of inconsistent responses to other items. To overcome this issue, the 

aberrance scores on each item are standardised before producing the dot product 

matrix. The standardised aberrance response vectors can be expressed as a 

matrix, and the matrix of inner product can be generated as the correlation matrix 

between aberrant respondents which is different from conventional correlation 

matrix where correlations between variables are used. 

 Analyse the matrix with factor analysis, the Q-type factor analysis, with rotation 

such as the Varmax rotation technique, and use factor loadings on individual 

factors to group test-takers with similar aberrant responses. 

This approach intends to cluster aberrant respondents into groups which may 

possess shared pre-knowledge of test content. The detection power was affected by 

the number of compromised items and the number of test-takers with pre-

knowledge. When 5% of the items (a total of 200) were compromised, the average 

detection rate was around 38%, higher than that identified using zl  or the Caution 

Index C. The detection rate was close to 100% when 20% of the 200 items used 

were compromised. 

Detection of test collusion using Kullback-Leibler Divergence 

Belov (2013, 2014, 2016) proposed the use of the Kullback-Leibler divergence index 

to investigate aberrant test performance, particularly test collusion which involves 

large scale sharing of test materials (including answers to test items) at test centre 

level. Here, the definition of test centre is not limited by the geographic location. His 

approach works in two stages: 

 stage 1: test centres with an unusual distribution of a person-fit statistic are 

identified using a statistic related to Kullback–Leibler divergence. For a centre c 

belonging to the collection of all centres sC  ( sCc ), this statistic cg  is defined as: 
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 where: 

cH  and xH  = the empirical distribution of the person-fit statistic used for 

centres c and centre x 

)||( xc HHD  is the Kullback-Leibler divergence defined for a finite set of K 

values },...,,{ 21 kddd  used to represent the distribution of cH  

and xH  which can be calculated from the following equation: 
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cg  is a measure of dissimilarity between the distribution of the person-fit statistic 

for test centre c and the distributions for the other centres. The definition of the 

statistic cg  balances the asymmetry of the Kullback-Leibler divergence. 

0)||( cc HHD . 

 stage : test-takers from identified test centres are analysed further using the 

person-fit statistic, where the critical value of the fit statistic used to detect 

aberrant respondents is computed using data from non-aberrant centres only 

Computer simulation studies were conducted to investigate the power of this 

approach for different conditions under which items are compromised and Type I 

error rates. The Type I error rates were below the nominal levels. The detection rates 

were over 90% at 05.0  for the conditions simulated. The approach was found to 

be effective in computer adaptive testing for detecting groups of test-takers with item 

pre-knowledge (accessed one or more subsets of items prior to the exam). Belov 

suggested that this approach is extremely flexible as any existing person-fit statistic 

used to detect aberrant test-takers can be used. Further, this approach can be 

applied to many forms of testing, including paper-and-pencil testing, computer-based 

testing, multi-stage testing (MST), and computer adaptive testing. 

Use of group proportion of persons identified as aberrant respondents by fit 

statistics 

Although the various person-fit statistics discussed previously which are used to 

identify individual test-takers with aberrant responses, given the specified level of 

significance  , the proportion of persons identified as aberrant respondents in a group 

(eg a class or a school) can be calculated. This group proportion may then be 

compared with the proportion of aberrant respondents observed for the population. If 

the group proportion of aberrant respondents is statistically significantly higher than 

the population value, the group may be assumed to have performed abnormally in 

relation to other groups. 
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4.2.3 Analysis based on item responses and test score distributions within 

individual groups 

Factor and cluster analysis based on item responses and test score 

distributions 

When investigating score anomaly at class level associated with score manipulation 

in the Italian standardised national tests for primary and secondary schools, 

Quintano et al. (2009) used a fuzzy k-means clustering approach which is based on 

four class-level indicators of test scores to identify outlier classes and correct class 

scores. These assessments contain both closed-form and open-ended items. The 

four indicators used by the researchers are: 

 Class mean score on the test sP  

 Standard deviation of scores of the class   

 Class non-response rate nrR  which is defined as: 
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where: 

sN  is the number of number of students in the class 

J  is the number of number of items in the test taken by the class 

inrJ ,  is the number of items not responded by student i 

 Homogeneity index of answers oH  which is defined as: 
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where: 

ih  is the number of alternative answers to item i 

jin ,  is the number of students in the class that gave the jth answer to item i 

Further analysis of the dimensionality of the indicators was undertaken using 

exploratory factor analysis with principal component (PC) extraction in order to select 

a set of underlying factors for clustering analysis. For their study, the researchers 

found that the first two components accounted for over 90% of the total variance. 

The first component was highly correlated with all the four indicators, while the 

second component was highly correlated with class non-response rate indicator. The 

correlation between the first factor and the class mean score was highly negative, 

while the correlations with both the standard deviation and answer homogeneity 
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were highly positive. The second component was highly correlated with class non-

response rate. The researchers suggested that the first component could be 

interpreted as the “outliers identification axis” and the second component the “index 

of class collaboration to survey”. 

The classes were then classified into 8 groups using a fuzzy version of the non-

overlapping k-means clustering with a value of 2 for the fuzzy parameter r (see 

Bezdek, 1981) based on the two principal components identified. This involves 

minimizing the following objective function using the repetition method: 
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where: 

cN  = total number of classes 

cS  = total number of clusters (8) 

r  = fuzziness parameter (=2. r=0 represents normal non-overlapping 

clustering) 

nsd  = the distance between class n and the centroid of cluster s 

]1,0[nsP  = the cluster membership degree of class n belonging to cluster s 

and 1
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The centroids of the clusters are then projected onto the two factor components to 

identify the outlying cluster. The researchers then used the class membership 

degree for the outlying cluster as a manipulation indicator to correct the class mean 

score. Based on comparison of performances between classes with external 

monitors and those without, Battistin et al. (2014, also see Angrist et al., 2014) 

further improved the estimation of the manipulation index. 

Comparison of item responses and test score distributions between groups 

taking the same test under different conditions – a likelihood approach 

In the Italian standardised national tests discussed above, the majority of the 

students take the tests in their own classrooms, invigilated by teachers from their 

own schools. However, these teachers are not currently teaching the classes they 

are invigilating. The teachers are also responsible for marking students’ work where 

needed, transcribing the answers and sending the results back to the National 

Institute for the Evaluation of the Education System (INVALSI) for analysis. A 
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proportion of the classes (about 10%) is also randomly selected and invigilated by 

external monitors. These external monitors perform the same tasks as the school 

teachers but have no prior connection to the schools they are assigned to. 

Fernández (2016) uses this as a large-scale natural experiment in which classes 

invigilated by external monitors were treated as the treatment group while those by 

teachers as the control group and adopts a likelihood approach to detect potential 

test score manipulation in classes where school teachers were invigilators. This 

approach is based on the comparison of score distributions between the treatment 

and control groups after controlling for the effects of other factors which could also 

affect students’ test scores. Classes with unlikely outcomes are identified through 

low values for the likelihood function of their score distribution. The likelihood values 

are also used to adjust class mean scores. The approach can overcome some of the 

limitations associated with the fuzzy k-means clustering approach used by Quintano 

et al. (2009) discussed above. 

Steps involved in implementing this approach include: 

 Model a response icjy  of student i in class c to item j in the test using latent 

variables: 

icjjicicj

icjicj
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yy

 


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where jic  ,  and icj  are the latent variables representing the individual-class 

effect, question effect and the individual-class-question iid shock respectively. The 

individual-class effect are treated as random and question effect as fixed 

 after the individual-class effects are accounted for, the answers of two students 

are independent. This make it possible to construct a likelihood function of score 

distribution of the classes. The likelihood function is modelled separately for the 

treatment group and the control group 

 for each class, a likelihood, cl̂ , can be estimated for its score distribution 

Comparison of the probability density function of the likelihood between the 

treatment group and the control group can be used to detect score manipulation in 

classes in the control group. That is classes with unlikely results (or with small 

probabilities) 

 the cumulative distribution functions (cdf) of the likelihood of the classes are 

constructed for the treatment group and the control group separately, which are 

denoted as )(, lF TRL  and )(, lF COL  respectively 

 the cumulative distribution functions are used to adjust the likelihood of the 

classes in the control group: 
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This will result in the adjusted cdf of the likelihood for the classes in the control 

group to be the same as that for the classes in the treatment group 

 the adjusted and unadjusted likelihood values are used to adjust the class scores 

for classes in the control group 

4.2.4 Analysis based on relationships between scores on subsets of items 

within the test 

The simple linear regression approach 

Li et al. (2014) used the simple linear regression method to look at the relationship 

between the difference scores between the multiple choice question (MCQ) section 

and constructed response (CR) section in the test, Y, and the ability estimates based 

on scores on the MCQ section 
MC  to identify groups of test-takers who might have 

performed on the test unusually. Their approach involves: 

 estimate the ability of persons based on their responses on the MCQ section of 

the test 

 or each test-taker, work out the difference score between the raw score on the 

MCQ section and the raw score on the CR section 

 for a group, such as a class or a school, work out the mean of difference scores Y  

and the mean of the ability estimates 
MC . The mean difference score is then 

regressed on the mean ability estimate: 

 iiMCi baY   ,         (70) 

where i denotes the ith group, ba   and   are the model parameters, and i  is the 

residual. Groups with the observed mean difference score between the MCQ section 

and the CR section outside the 95% interval (or any other specified   level) of the 

predicted value are identified as abnormal groups. If the residuals are standardised, 

groups with the standardised residuals which are above (or below) 2 standard 

deviations (or any other desired values) are flagged. The detection rate at class level 

was found to be affected by the type of simulated irregularity. 

4.3 Analysis based on similarity of response patterns and other 

variables over time 

The Jacob and Levitt approach 

To investigate whether there was test collusion in individual classes, Jacob and 

Levitt (2003) developed a method which uses two class level indices, with one 

related to the unexpected class score fluctuations in terms of score gains between 

two consecutive years and the other related to unusual similarity in item response 

patterns from the students in the same class for blocks of items. Classes which have 
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high values on both indices are flagged as potential instances of test collusion. 

Thiessen (2007, 2008) and Wollack and Maynes (2011) provided a summary of the 

method developed by Jacob and Levitt which is further summarised below. 

Index for unusual test score fluctuations 

If test scores from different years are placed on the same scale, it is normally 

expected that most of the students’ scores increase at a relatively constant rate over 

time although variability in score gains between students exists as they are affected 

by a range of factors. For a specific class, if the majority of the students have large 

test score gains in one year but followed by small score gains (or loss) in the next 

year, then unexpected test score fluctuation has happened. Assuming that year t is 

the year in which the test of interest was administered, the unexpected test score 

fluctuation index cbtSC  is derived using the following procedure: 

 work out the average test score gains from t-1 to t and from t to t+1 for all students 

in the class. 

 work out the percentile rank of the class’ average test score gains relative to all 

other classes in that same subject, grade, and year. The percentile ranks of 

growth are tbcgnrk ,,_  from year t-1 to year t and 1,,_ tbcgnrk  from t to t+1 

respectively. 

 the index cbtSC  is defined as: 

 2

1,,

2

,, )_1()_(  tbctbccbt gnrkgnrkSC      (71) 

As is clear from the above definition, the index takes higher values for classes that 

show large score gains this year and small score gains next year. It is also clear that 

the use of squares in the definition gives more weight to large score gains this year 

and large score decline the following year. Classes that have values in the top 95th 

percentile of cbtSC  will be flagged as having unexpected test score fluctuations. 

Index for unusual item response patterns within a class 

The second index, cbtANS , is used to identify unexpected item response patterns in 

students’ answers within the class. This index combines the following four measures: 

 Measure for unlikely block of identical answers by students on consecutive 

questions. 

A multinomial logit model was used to predict the likelihood of each student 

choosing each possible answer on each question, taking into account the 

student’s past test scores, future test scores, and background characteristics. The 

block of identical answers from the students in the class that were least likely to 
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have arisen by chance was identified by searching all combinations of students 

and consecutive questions. 

If each student in the classroom has unique responses from item m to item n, then 

there will be a distinct value of this index for each student in the class. If all 

students in the classroom have identical responses across these items, then there 

will only be one value of this index (and the value will be extremely small). 

The calculations are repeated for all strings from a length of 3 items to a length of 

7 items. 

It is to be noted that the values yielded by these calculations will be smaller as: (1) 

the number of students with identical responses increase, (2) the length of the 

string of identical responses increase. Thus, smaller values are associated with 

more improbable answer strings within a classroom. The minimum value of this 

measure for each classroom is recorded as measure 1: 

 Measure for the correlation in student responses across the test 

This measure is intended to capture more general patterns of similarity in student 

responses beyond just identical blocks of answers. It is derived from the residuals 

for each item choice for each student in the class calculated based on the 

predicted category probabilities from the multinomial logit model. This is to a 

degree also a measure of within-class correlation in student responses. This 

measure, measure 2, will take high values for a class if students in the class tend 

to give the same answers to many questions. 

 Measure for variability in correlation between questions 

As there can be many reasons to account for high values of within-class 

correlation represented by the second measure (for example, specific topic areas 

have received particular attention during the school year which could result in 

correct answers from students to the relevant questions), the third measure, 

measure 3, which measures the variance in the degree of correlation across 

questions and is calculated as the variance of question residuals from the second 

measure, is introduced to detect potential cheating. If the answers for multiple 

students on selected questions were changed, there would be high within-class 

correlation on those questions, while the within-class correlation on other un-

changed questions would likely to be typical. This would lead to larger cross-

question variance in correlations than normal in the cheating classes. 

 Measure for unusual response patterns for students with the same test scores 

This measure compares the responses from students within a class to those from 

other students in the system who have obtained the same test scores. It is used to 

identify students who answered difficulty questions correctly but easy questions 
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incorrectly or missed the easy questions, which may be an indication of cheating. 

The measure is calculated based on comparing the class level item scores with 

the population item scores (conditioned on the same total test scores). Large 

values of this measure would suggest that the responses from a large number of 

students in the class deviated from those in the system who have similar total test 

scores. 

Classes are ranked on each of the four measures discussed above. The 

percentile ranks are then squared and summed to form an overall measure for the 

second index: 

 2
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Classes with overall ranking on this index above the 95th percentile are identified 

as having unusual patterns in the responses from students. 

Identifying cheating classes 

Jacob and Levitt argued that taken individually, the above two indices do not detect 

teachers who manipulate the responses of their students. It is possible that some 

classes will have unexpected score fluctuations and some classes unusual response 

patterns. However, the likelihood of a class that scores high on both indicators 

should be small. For classes where no collusion took place, the two indices should 

not be highly correlated. In contrast, if a teacher manipulates students’ responses, 

strong correlation between the two indices would be expected. For classes with the 

95th percentile ranking on both indices, there is potential that test collusion has 

happened. Application of this method to real data suggested that about 4-5% of the 

classrooms studied potentially had cheated every year. 

The two-proportion Z-score approach 

Gaertner and McBride (2017) used the two-proportion z-score which is based on the 

difference in the school’s pass rate between two years and the difference in the 

population pass rate between the two years to identify schools with anomalous 

changes in pass rates over time. The effect size of the difference in pass rates 

across the years is expressed as Cohen’s h which is considered to be large if greater 

than 0.8. Their simulation study suggests that the z-score approach was effective 

when cheating occurred in a large school. 

The multilevel logistic regression (MLR) approach 

Gaertner and McBride (2017) also used a two-level logistic regression model to 

investigate school level change in pass rate over time. A student’s likelihood of 

attaining a passing score in the second year is modelled as a function of the school 

she/he attends and the prior-year pass rate at that school. The school level residuals 
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are used to identify anomalous schools. Their simulation study indicates that the 

MLR approach was effective in detecting cheating at small schools. 

The Bayesian hierarchical linear growth model approach 

Skorupski and Egan (2011, 2014) and Skorupski et al. (2017) proposed an approach 

to detect cheating and aberrance at group level that uses a Bayesian hierarchical 

linear model (HLM) to describe growth in performance on state-wide assessments 

(SWAs) over time (three years in their studies). In the model, the scores from 

individuals over time are nested within students who in turn are nested within groups. 

The model can be expressed as follows: 

 igtgttgigt GTTGY   )()()( 3210      (73) 

where: 

igtY  = vertically linked score of students i in group g with gN  students at time 

t 

G, T and GT = group effect, time effect and group-time interaction effect 

respectively 

0 , g1 , t2  and gt3  = intercept, main effect for group, main effect for time 

and interaction effect between group and time 

igt  = random error with an expected value of zero 

Unusually large group-time interaction would suggest potential aberrance. A statistic, 

delta ( gt ), was proposed to evaluate the effect or size of group-time interaction: 
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A critical value of 0.5 was suggested for flagging aberrant groups. Results from 

simulation studies indicated that the detection rate varied from 55% to 83% with the 

Type I error rates varying from 1% to 2% for the simulated conditions. 

4.4 Analysis based on relationship with other variables 

This section discusses methods used to identify groups with anomalous test results 

that are based on relationships between the test being investigated and other 

variables. This type of analysis is particularly useful when item response vectors for 

individuals are not available. For example, results from school-based teacher 

assessment (SBTA) or non-exam assessment (NEA) normally just report an 

aggregated score at the overall assessment level. There is potential for inappropriate 

marking/scoring of students’ work to take place in SBTAs and NEAs (eg Ofqual, 

2012). 
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Use of the cumulative logit regression model 

Clark et al. (2013, 2017) used the cumulative logit regression model to investigate 

groups (classes or schools) with unusual performance in a test. Their approach 

involves the following steps: 

 for the test on which groups with unusual performance are to be investigated, 

each individual is classified into one of the J possible performance categories (eg 

based on their raw or scaled score and the performance cut scores) 

 the predictor variables ),...,,( 21 IXXX  are continuous (for example, the prior 

attainment or scores on different tests). Clark et al. initially proposed the approach 

for predicting current year’s performance from previous year’s test scores. 

However, the approach could be applied to situations where a suitable predictor or 

predictors are available) 

 assuming a person with probabilities being classified into different performance 

categories ),...,,( 21 JYYY  to be ),...,,( 21 J , the cumulative probability that the 

person is classified into performance category j is modelled using the cumulative 

logit regression model: 
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where }{ 0 j  and }{ ji  are model parameters. 

 for each person, the probabilities of being classified into individual performance 

categories are treated as expected values. The expected count of persons from 

group k that are classified into category j, )( jkPE , can be calculated as the sum of 

the probabilities of the persons in the class divided by the number of persons jN  

in the group: 
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 for each performance category j for group k, work out the standardised residual as 

the difference between the observed proportion 0,jkP  and the expected proportion 

)( jkPE  divided by the standard error (partly related to the number of persons 

being classified into the category jkN ): 
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The standardised residuals are expected to be normally distributed with a mean of 0 

and a standard deviation of 1. At a specific performance level for the group, positive 
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values indicate higher than expected proportion of students from the group that were 

classified into the category, negative residual lower than expected proportion of 

students being classified into the category. Groups with values of the standardised 

residuals greater than 3 could be treated as performing significantly differently from 

expected. 

Clark et al. (2013, 2017) suggested that particular attention may need to be paid to 

groups with extremely large positive residuals. Using simulated data, they showed 

that the cumulative logit regression model was considerably more effective than the 

weighted least squares regression method in identifying groups with unusual 

performance. The detection rate was found to be over 98% for the conditions 

simulated. The Type I errors were generally below the nominal levels. 

The Regression and cluster based approaches 

In many situations, a dependent variable on which outlying members (for example, 

classes or schools performed unusually on an achievement test) are to be identified 

is modelled using one or more independent variables. A member is flagged out as an 

outlier if its observed value on the dependent variable is significantly different from 

that predicted by the model. Simon (2014) suggested that many existing methods 

identify outlying schools with respect to all the schools included in the analysis and 

refers them as global outliers. He argues that schools with suspicious behaviour may 

not exhibit sufficient extremity to be identified as global outliers. But such schools 

may be regarded as outliers when compared with their peers – schools which are 

similar in many relevant aspects or similar values on the independent variables. He 

suggested that conventional techniques lack the ability to identify local outliers. 

Using data mining techniques, Simon developed an approach, the Regression based 

Local Outlier Detection algorithm (RedLOD), which can be used to identify groups 

which are local outliers with respect to a variable of interest. The basic assumption of 

this approach is that schools which have similar values on a set of independent 

variable should also be expected to have similar values on the dependent variable. 

This approach involves the following stages (see Simon, 2014): 

 data preparation. For both dependent and independent variables, the raw data 

may be transformed onto different metrics and values for individual students are 

aggregated to produce school level data. It is the school level data that is used in 

the analysis. 

 selection of independent variables. For the dependent variable, a set of intendent 

variables are selected. One of the approaches that can be used to select 

independent variable is through multiple regression. Contributions from the 

independent variables to the amount of variance in the independent variable that 

can be explained by the regression model can be examined. 

 assessing the importance of independent variables and identifying peer schools. 

Once a set of independent variables have been selected, their relative importance 
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in identifying peers is determined through their weights which will be used to 

identify peer schools using the following steps: 

 

1. Initialize all weights for the independent variables to kw  (k=1,2,…,K, where K  is 

the total number of independent variables) 

2. The weighted Euclidean distance between school i and j, ijD , is calculated as: 
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where kix  and kjx  are the values of schools i and j on independent variable kx  

3. For each school s, form its current peer group gP  by selecting the closest pre-

determined number of schools. Perform regression analysis using the data from 

the schools in the peer group and obtain the coefficients. Normalize the 

coefficients so that the absolute values of the coefficients sum to 1. The 

coefficient of the k-th independent variable for school is denoted as skC .For 

each school, a set of regression coefficients are obtained. 

4. The weight kw  for the k-th independent variable is then recalculated as the 

mean of the corresponding coefficients of all schools (total number of gS ): 
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The weight for an independent variable is therefore related to its ability in 

predicting the dependent variable within peer groups. 

5. Repeat steps 2-4 until the sum of the squares of the difference between the 

coefficients for two consecutive iterations is less than a pre-specified threshold. 

A value of 0.001 was used by Simon (2014). 

 

Practical implementation of the above procedure may need to consider 

computational implications. In his study, Simon used 100 randomly selected 

schools to estimate weights. A value of 0.03 was use as the distance to identify 

peer schools. 

 identifying local outliers within the peer groups. For the dependent variable on 

which outlying schools are to be identified, empirical p- value derived using 

bootstrap resampling with replacement can be used. The following steps will need 

to be taken: 

o for each school s, draw a bootstrap empirical distribution of the dependent 

variable from its peer schools (the school s itself is excluded). For each 

bootstrap sample, a p-value is calculated for the school. Repeat the sampling 

and work out the average p-value over the bootstrap samples. A small p-value 

would indicate that the school performed unusually better than its peers. 
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o flag schools with small p-values (eg p<=0.05) or schools with a low number of 

peer schools (less than 10) 

Simon used the RegLCD approach to investigate local outliers for large scale real 

tests in a number of subjects and across several grades. He compared his method 

with other methods used to identify global outliers and showed that it was able to 

identify outlying schools which were missed by the other methods. 

Multilevel modelling 

The relationship between the test being investigated and the variables concerned 

can be modelled using linear regression models, including multilevel regression 

models. Multilevel models have been used in value added analysis extensively and 

also used for statistical moderation of results from school-based assessments in a 

number of countries (See, Kim and Lalancette, 2013; Hong Kong Examinations and 

Assessment Agency, 2012). He and Stockford (2015) proposed to use a two-level 

linear regression model with random intercept and fixed slope effects to identify 

schools (or test centres) that might have performed unusually on school-based non-

exam assessment (NEA) components in relation to their performance on external 

exam (EE). 

This model can be expressed as: 
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where: 

ijY : the score of student i from centre j on the school-based NEA 

ijX : the score of student i from centre j on the external exam assessment 

00 : model parameter representing the fixed effect component of the intercept 

ju0 : random intercept component at centre level 

j1 : model parameter representing fixed effect for the slope of the regression 

line at centre level 

ij : student level random error or residual 

Graphically, this model produces centre regression lines which are parallel (having 

the same slope j1 ) and intersect with the y-axis at different locations (or with 

different values for the random component ju0  of the intercept). Since only the 

intercept can take different values for different centres, differences in the intercept 

values would represent any systematic differences in scores awarded on the NEA 
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component between schools, taking into consideration the effect of exam 

assessment scores. Therefore, the intercept could be used to identify schools that 

might have performed unusually on the non-exam assessment component. 

Furthermore, since values of ju0  are centred on 00  (the intercept of the average 

line that crosses students from all schools), it represents the departure of the 

intercept for the centre from the average of all centres. 

The following steps would be needed if using the approach described above to 

identify centres for which further moderation process may need to be taken: 

 analyse the data using the model specified above with a multilevel modelling 

software 

 rank order schools based on their values of the random intercept component ju0  

 centres with values of ju0  greater than 
j0

3   (the standard error of the intercept 

estimate arising from the model fitting process) may be regarded as outliers 

Given the complex nature of multilevel modelling, implementation of the approach 

described above for operational use will likely involve the use of specialised software 

packages or, at least, bespoke routines implemented in standard statistical software 

packages. 

Simple linear regression analysis 

While a multilevel level model may describe the relationship between variables with 

a hierarchical structure more accurately than conventional linear regression models, 

its implementation for operational use may be complicated. He and Stockford (2015) 

described a procedure involving the use of the simple linear regression approach to 

identify schools with unusual performance on the NEAs. The simple linear regression 

model, which is similar to the linear regression model proposed by Li et al. (2014), 

can be used to describe the relationship between the NEA component and the EE 

assessment component can be expressed as: 

 ii xy   0         (79) 

where: 

iy : the score of student i on the non-exam assessment 

ix : the score of student i on the exam assessment 

i : residual or random error 

  and 0 : model parameters representing the slope and intercept of the 

regression line respectively 
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Equation (79) can be applied to students from individual centres or students from all 

centres. Model parameters in conventional regression analysis can be estimated 

using the least squares method (minimising the sum of the squares of the residuals). 

When it is applied to students from all centres, the hierarchical structure of the data 

is ignored. When it is applied to individual centres, different values for the model 

parameters may be produced for different centres. Use of the simple linear 

regression model represented by Equation (79) for statistical moderation would need 

to assume that the relationship between the two variables are similar for all schools. 

That is, values of the model parameters should be the same across the schools, 

taking into consideration any statistical uncertainties associated with their estimation. 

To use the simple linear regression analysis approach to identify centres with 

unusual performance on the non-exam assessment, Equation (79) can firstly be 

applied to students from all centres and the global model parameters are estimated, 

which are denoted as All  and All,0  respectively. For each school, the relationship 

between the two variables is assumed to be linear and the slope of the line takes the 

same value as that of All , but the intercept can take different values for different 

schools (ie the relationships between the two variables for the schools are 

characterized by parallel lines, as in the case of the multilevel modelling approach 

discussed earlier). Therefore, for a specific centre j: 

 jijijAllji xy   0        (80) 

And the intercept 0j  for centre j can be calculated from jAlljj xy  0  where jy  is 

the average score of students from centre j on the non-exam assessment, and jx  is 

the average score of the students on the exam assessment. This ensures that the 

line crosses the centre of the data points from the centre. The standard error j0
  of 

the intercept estimate 0j  may be estimated using the following equation: 
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where jN , j  and xj ,  are the number of students in centre j, the standard error of 

estimate (the standard deviation of the residuals) and the standard deviation of the 

predictor respectively. j  and xj ,  are defined as: 
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Because the lines have the same slope, any systematic difference in the relationship 

between the two variables among the centres will be reflected only by the difference 

in the values of the intercept parameter 0j . Centres with high intercept values 

performed better on the NEA than centres with lower values although their 

performance on the exam assessment may be similar. To make comparison 

between centres more meaningful and easier, a mean value of the centre intercept 

can be calculated and the centre value can then be compared with this mean value.  

To use the procedure described above to identify schools that may have performed 

unusually on the NEA, the following steps would need to be taken: 

 model the relationship between the two variables with Equation (79) using 

students from ALL centres to estimate the global model parameters ( All  and 

All,0 ) 

 for each centre, assume that a linear relationship between the two variables exists 

and the slope of the line is the same as the global slope All  

 work out the intercept of the line for the centre 0j  

 calculate the mean of the centre intercept values which can be denoted by Centre0  

(or use the global intercept value All,0  obtained using students from all centres) 

 calculate the difference 0j  between the centre intercept value and the mean for 

all centres (ie Centrejj 000   ). Centres with positive difference values 

performed better than the average performance of all centres on the NEA, taking 

into consideration their performance on the exam assessment. In contrast, centres 

with negative values performed below the average performance of all centres on 

the NEA. Centres with the absolute value of the difference 0j  greater than 

three times the standard error ( j0
 ) of the centre intercept estimate may be 

regarded as outliers 

The procedure described mirrors the multilevel modelling approach closely but 

represents a simplified version that would, arguably, be easier to implement for 

operational use. No specific software packages would have to be used for such an 

implementation, however, it is still necessary to fit a statistical model. In summary, 

this trades some statistical model fitting complexity for additional steps in the 

processing and a reduction in statistical power. 

A residual analysis approach using standardised scores and principal axis 
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If Equation (79) is applied to students from all centres, a residual analysis or “value 

added” approach could also be developed and used for identifying centres which 

may be regarded as outliers (see He and Tymms, 2014; He and Stockford, 2015). 

The “value added” relationship considered here is between students’ EE 

performance and their NEA mark. (Note that the term “value added” as being used 

here differs from its frequent use in the field relating prior attainment to grade 

outcome). These would be centres with exceptionally high (or low) values on the 

value added measure. To make a comparison between centres, instead of using 

Equation (79) to represent the relationship between the performance on the NEA 

and that on the EE, the principal axis may be used. For a bivariate dataset, such as 

that considered here, the principal axis is the line of symmetry on which the variance 

of the data points is maximised. When measures on both variables are standardised 

to have the same mean and standard deviation, the principal axis is reduced to the 

identity line: 

 iii RXY           (81) 

where 
iY  and 

iX  are the standardized scores of student i on the non-exam and 

exam assessments respectively, and iR  is the residual. Equation (81) suggests that, 

for student i, given his/her observed score 
iX  on the exam assessment, his/her 

expected or predicted score on the NEA (the average score on the NEA for students 

with similar exam scores) would be also 
iX . When the residual 

iR  (
ii XY  ) is 

positive, the student performed better on the non-exam assessment than the 

average performance of students with similar exam performance. If the residual is 

negative, the student performed below the average of the students with similar level 

of exam performance. 

For centre j with jN  students, the average value added jAV  is calculated as: 

 
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      (82) 

This average value added may be used as a measure for quantifying any systematic 

difference in performance on the NEA between centres, taking into consideration the 

performance on the exam assessment. As the average value added for all centres is 

zero, centres with positive value added performed better on the NEA than the 

average performance of centres with similar exam performance. Centres with 

exceptionally high positive or negative “value added” measures could be regarded as 

outliers. 

This approach would involve the following steps: 



Statistical techniques for studying anomaly in test results 

 

74 
 

 standardize both sets of raw scores (NEA and EE) to have the same mean and 

standard deviation, for example, 0 and 1.0 respectively. 

 for each student, work out their value added score iii XYR   (based on the 

standardised scores) to create a set of value added scores 

 for each centre, work out their mean value added score jAV  

 work out the standard deviation of the centre level value added scores VA  

 if the absolute value of the centre level value added jAV  is greater than VA3 , 

then the school may be treated as outliers 

This procedure is easy to implement for operational application as it does not require 

the fitting of any statistical models and would not need use of any specialised or 

statistical software packages. 

5. Concluding remarks 

A range of statistical techniques have been developed to study anomaly in results 

from high-stakes tests and assessments. These generally involve statistical test of 

significance in difference between the observed item response patterns or test 

scores from test-takers and those expected from theoretical/empirical models or the 

responses and scores from other test-takers in the sample or population. Such 

significance test involves the analysis of: 

 response patterns on items from individual test-takers in relation to those expected 

from theoretical/empirical models or from other test-takers 

 item responses and test score distributions within groups of test-takers in relation 

to those expected or from other groups 

 relationship between performances on different subsets of items in the test for 

individuals and groups 

 relationship between the performance on the test and performance on other 

variables for individuals and groups 

Many of the methods reviewed have been developed or used to detect anonymous 

responses and scores from high-stakes tests and examinations associated with 

cheating or test collusion at individual test-taker level or group level. Cheating in 

high-stakes testing can take various forms, including test-taker cheating; teacher 

cheating, test coaching, either by a classroom teacher or from a review course; 

systematic answer sharing during the test; use of harvested items; inappropriate 

marking or scoring of test-takers’ work; and others (see Wollack and Mayes, 2011; 

Belov, 2013). Cheating and collusion have been a concern for assessment 

providers, the relevant authorities, and other users of test results. With the rapid 

advance in technology, new techniques are being increasingly used in cheating, 

which makes cheating more sophisticated and difficult to detect using conventional 

means, and statistical approaches can provide useful information. It should however 
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be emphasised that there can be many other factors other than cheating that can 

produce anomalous responses and test scores. For example, if the test is 

inappropriate for the test-takers being tested in terms of the levels of ability and the 

type of skills and knowledge being assessed by the test, or the test-taker behaves 

unconventionally when answering questions (eg random guessing, language 

deficiency, creative interpretation of test items), anomalous responses and scores 

may result (see Meijer, 1996a, b; Karabatson, 2003; Thiessen, 2008). As Bishop and 

Stephens (2013) suggested, statistical techniques used to detect cheating 

behaviours can identify statistically unusual patterns in test data. Although they can 

provide some kind of likelihood-based conclusion about possible cheating for those 

who are interested in the performance of the test and use of the results, it is 

impossible for them to prove that cheating or test collusion has actually happened. 

Rather, they demonstrate how extremely unlikely the identified anomalous results 

would happen based on the given underlying assumptions made about the models 

used to analyse the test data. 

It is also worth noting that the same test data may be analysed using different 

methods to detect the same or different aberrant behaviours. In situations where 

different methods can be used to the whole dataset or parts of the dataset, 

application of multiple methods may be beneficial as different methods examine the 

data from different perspectives. A high percentage of respondents simultaneously 

flagged by several aberrant indices could be an indication of aberrant response 

behaviour (eg Meijer and Tendeiro, 2014; Plackner and Primoli, 2014). Further, 

multiple methods may also be used to identify the extent to which different methods 

account for variation in detecting test-taking irregularities associated with test 

collusion (see Plackner and Primoli, 2014). 
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