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Summary

Anomaly in test results refers to deviation of item response patterns and/or test
scores for individual test-takers or groups of test-takers from those that are expected
based on theoretical/empirical models or those from others in the sample or the
population. There are many factors that can cause anomaly in responses and test
scores. These include inappropriateness of the test for the test-takers in terms of the
levels of ability of the test-takers and the type of knowledge and skills being
assessed by the test; unconventional behaviours of the test-takers in answering
guestions; inappropriate behaviours such as cheating by either the test-takers
themselves or those acting on behalf of them; and others. The existence of
aberrance in test results can make test scores inaccurate and invalidate their
proposed interpretations and uses. This report reviews a selection of statistical
techniques that have been widely used to study anomaly in test results at both
individual test-taker and group levels. Particular attention has been paid to the
suitability of the various methods to analyse tests of different formats:

e tests composed of multiple choice questions, short-answer questions, or
extended-response questions
¢ linear or adaptive testing

And their features in terms of:

¢ the underlying assumptions made about the statistical models or empirical
relationships used to derive the necessary statistics to measure aberrance

e the power and accuracy of the aberrance measures in detecting anomaly
associated with different types of inappropriate behaviours such as answer
copying, answer changing, item pre-knowledge, or inappropriate marking/scoring

e and their implications for practical application in terms of interpretability of the
aberrance measures, resource requirement, and availability of software packages
to conduct the necessary analyses

The report is intended for use as a reference by researchers working in the field of
educational assessment.
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1. Introduction

Responses to items in a test and the aggregated test score from a test-taker can be
affected by a variety of factors, including the appropriateness of the test for the test-
taker in terms of the level of ability and the type of knowledge and skills that the test
is intended to measure. When a test is appropriate for a test-taker with a certain level
of ability, the item response pattern or test score can be predicated with a certain
degree of certainty based on the underpinning measurement model used or the
response patterns and scores from test-takers with similar level of ability in the
sample or population. If an observed response pattern and test score for a test-taker
do not conform to the expected pattern and score or those from other test-takers, the
response pattern and score are aberrant. There are many factors that can generate
anomalous responses and test scores. These include inappropriateness of the test
for the test-takers being tested, unconventional behaviours of the test-takers in
answering questions, inappropriate behaviours such as cheating by either the test-
takers themselves or those acting on behalf of them, and many others (see Meijer,
19964, b; Karabatson, 2003; Thiessen, 2008). Aberrant responses can result in
spuriously high or spuriously low test scores for test-takers. The existence of
aberrance in test results can make test scores inaccurate and invalidate their
proposed interpretations and uses (see Cizek and Wollack, 2017).

Meijer (1996a, b) described five factors that can cause a test-taker’s responses to
items in a test to be aberrant, producing spuriously high or low scores: cheating,
careless responding, lucky guessing, creative responding, and random responding
(also see Karabatson, 2003; Meijer and Sijtsma, 2001; Thiessen, 2008; Emmen,
2011; Tendeiro, 2013). Cheating refers to behaviours where the test-taker
illegitimately obtains the correct answers on items which they are unable to answer
correctly through pre-knowledge of the items or copying answers from other test-
takers or answers provided by their teachers. Careless responding happens when
the test-taker answers certain items in the test incorrectly which they are able to
answer correctly. Lucky guessing occurs when the test-taker guesses the correct
answers to some test items (such as multiple choice items) which they do not know
the correct answer. Creative responding happens when a high ability test-taker
obtains incorrect answers to certain easy items due to creative and complicated
interpretations of the items. Random responding occurs when the test-taker just
randomly select the alternatives of some multiple choice items.

Cheating or inappropriate behaviours can take place at both individual test-taker
level and group level involving a large number of test-takers from the same class (or
school) or different classes (or schools). Cheating that happens at group level can in
some cases involve teachers or other relevant people who assist the test-takers to
increase their test scores illegitimately. This type of cheating is referred to as
educator cheating (Thiessen, 2008). Group level cheating represents test collusion,
which may include teacher cheating, test coaching, either by a classroom teacher or

5
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from a review course, systematic answer sharing during the test, use of harvested
items, inappropriate marking or scoring test-takers’ work, and others (see Wollack
and Mayes, 2011; Belov, 2013). As indicated by Belov (2013), test collusion is not
limited by the geographic location (eg room, class, school) and can be extended to
support various relations between test-takers (eg from the same test-preparation
centre, the same group at a social network). Since results from assessments can be
used for purposes such as certification of individuals, selection of individuals for
further learning/training programmes, and the accountability of teachers and schools,
they can be high-stakes for both individuals (students and teachers) and schools.
Cheating represents one of the potential negative consequences associated with
high-stakes testing (see Cizek, 1999; Madaus et al., 2009). Analysis of anomaly in
test results has been used for various purposes, including providing diagnostic
information about students’ learning and detection of cheating (Meijer and Sijtsma,
2001; Karabatson, 2003; Meijer and Tendeiro, 2014). A large number of statistical
techniques have been developed to study aberrant responses and anomalous test
scores, with particular focus on detecting anomaly associated with different types of
cheating. Although research on methods used to detect test cheating has been
primarily focused on individual test-takers, recent years have seen increasing studies
on methods used for detecting test collusion (see Wollack and Maynes, 2011; Belov,
2013). Most of such studies were undertaken by researchers in the United States
and the Netherlands.

There has been increasing discussion about inappropriate test-taking behaviours by
individuals and institutions in high-stakes national assessments and qualifications
used in the UK and interests in methods used to identify institutions with unusual
performances in tests and examinations (see, for example, Ofqual, 2012; He and
Stockford, 2015). There have been numerous studies involving the use of multiple
statistical methods to investigate anomaly in test results to detect cheating and test
collusion and reviews of specific types of aberrant statistics (see Meijer and Sijtsma,
2001; Karabatson, 2003; Wollack, 2006; Plackner and Primoli, 2014; Meijer et al.,
2015). This report intends to provide a more comprehensive review of the most
widely used statistical techniques for detecting anomalous test results associated
with different types of cheating at both individual test-taker and group levels, drawing
on findings from the most recent research in this area and with a particular focus on
the potential of using these techniques in the context of high-stakes national
assessments used in the UK.

2. Methodology

Research papers and reports were collected from a range of sources for review,
including:

¢ those published in academic journals and books
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e those published on the internet by individual researchers, assessment
organisations and other research institutions

e unpublished reports from UK exam boards, assessment organisations and other
research institutions

Particular attention of the review has been paid to the suitability of the methods to
analyse tests of different formats:

e tests composed of multiple choice questions, short-answer questions, or
extended-response questions
e linear or adaptive testing

And their features in terms of:

e the underlying assumptions of the statistical models that are made to derive the
necessary statistics used for measuring aberrance

e the power (rates of detection) and accuracy (Type | error rates or false positive
rates) of the techniques in detecting anomaly associated with different types of
inappropriate behaviours such as answer copying, answer changing, item pre-
knowledge, or inappropriate marking/scoring for individual test-takers and groups
of test-takers

¢ the implications for practical application in terms of interpretability of the aberrance
measures derived, resource requirement, and availability of software packages to
conduct the analyses

Effort was also made to briefly describe most of the important steps involved in
deriving and applying the techniques reviewed.

3. Analysis of aberrant item response patterns and
test scores for individuals

3.1 Analysis based on person-fit (misfit) statistics

Item response or score patterns from individual test-takers may provide additional
information to total scores on a test (Meijer and Tendeiro, 2014). One of the
approaches used to study item response patterns is person-fit analysis which
generally involves the comparison of the observed response pattern from a test-taker
with his/her expected response pattern (Karabatsos, 2003; Meijer and Tendeiro,
2014), and a person-fit statistic is derived to characterise the similarity between the
observed and expected patterns. If the observed response pattern conforms to the
expected response pattern sufficiently well, the person’s response pattern is
regarded as reasonable or non-aberrant. If, on the other hand, the person’s
response pattern departs from the expected pattern substantially, his/her response
pattern is said to be aberrant or the person is misfitting. There are generally two
approaches that can be used to determine the expected response pattern: the
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expected (predicted) response pattern is produced using a theoretical or
mathematical model (such as an item response theory model) that characterises the
interaction between the person and the items in the test, or the expected response
pattern is based on the observed response patterns from all test-takers included in
the sample. Person-fit indices associated with the first approach are also termed
parametric indices, while those associated with the second approach non-parametric
indices.

The basic idea used to derive person-fit statistics is that the item response pattern
from a test-taker should reflect the difficulty distribution of the items (see Bishop and
Stephens, 2013). A test-taker should have a larger chance to answer an easy item
correctly than a harder item. Bishop and Stephens (2013) grouped the methods used
to derive person-fit statistics into three categories:

e Likelihood: The likelihood approach examines the likelihood that the test-taker’s
response pattern agrees with the model predicted item response pattern, with
higher maximum value of the likelihood function indicating better agreement.

e Covariance: The covariance approach looks at the degree the test-taker’s
response pattern diverges from the Gutmman Perfect Pattern. If a test-taker
answered all easy items correctly but more difficulty items incorrectly, then his/her
score pattern is a “Guttman Perfect Pattern”.

e Deviation: The deviation approach examines the sum of the differences (or
squares of the differences) between the observed responses and the predicted or
expected responses for individual items, with higher values indicating larger
deviation of the observed item response pattern from the predicted response
pattern.

Meijer and Sijtsma (2001) provided a comprehensive review of a wide range of
person-fit statistics. Karabatsos (2003), Thiessen (2008), Meijer and Tendeiro (2014)
and Meijer et al. (2015) discussed and applied different person-fit indices in their
studies. Some of the widely used indices are discussed below in more detail.

3.1.1 Tests composed of dichotomous items

This section discusses indices used for tests composed of dichotomous items.
Non-parametric person-fit indices

Guttman’s G indices

The simplest non-parametric person-fit index is the G statistic proposed by Guttman
(1950, see also Meijer, 1994; Thiessen, 2008). The dichotomous items in a test are
sorted according to their difficulty (eg proportion correct). If the items are paired, the
G statistic for person n is defined as the counts of the response pairs that deviate
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from the Guttman Perfect Pattern (or the number of Guttman errors) (see Meijer,
1994):

Gn = ani(l_xnj) (1)

J-1
i=l j=i+l

where X; and X, are scores on items i and j respectively, and J is the number of
items in the test.

A perfect Guttman response pattern will produce a G value of zero. Higher G values
would represent a greater departure from the Guttman perfect pattern. Since the
value of G is likely to increase with an increase in test length, a normalised statistic
that takes into account the maximum number of possible Guttman errors was
proposed:

. G,
e @

where r, is the total score of person n on the J test items. Values of G* are in the

range [0,1], with O representing perfect Guttman distribution and 1 the reversed
Guttman distribution.

The U3 index

The non-parametric U3 index is also a measure of deviance of score patterns and is
defined for person n with an observed score r,as (see van der Flier, 1982; Meijer,
1994, Karabatsos, 2003):

5 InX;) ~In(X,)
~In(X;)=In(X;)

(3
where:
IR P;
In(X,) —jZ_ll[an |09(—1_ 0, )]
* _ rn pJ
In(X,) _é[log(—l— p-)]

]

Py
P;

In(X;)= > llog(

j=r,+1 1-

p; = proportion correct by the test-takers on item j.
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Values of U3 can vary from 0 to 1. Again, when the response pattern is the perfect
Guttman pattern, the value is 0. If the response pattern is a completely reversed
Guttman pattern, U3 will be 1. U3 can be standardised to have an asymptotically
normal distribution (see Meijer and Sijtsma, 2001; Karabatsos, 2003):

U3-E(U3)

1/Var(U 3) “)

where E(U3) and Var(U3) are the expectation and variance of U 3 respectively.

ZU3=

The Caution Indices

The Caution Index C examines the ratio of the covariance between a person’s item
scores and the item proportion scores and the covariance between the person’s item
scores on the easiest items and the item proportion scores and is calculated from the
following equation (see Sato, 1975; Thiessen, 2008; Karabatsos, 2003):

_,_Cov(X,, p)
=1 Cov(X.,p) ©)

where:

p=(p,, P,y P;), item proportion correct vector
X, =Xy X, X,y) , €Xaminee n’s item response (score) vector
X = examinee n’s response vector containing correct responses only for the

easiest r items.

As can be seen, if the person’s response pattern is a perfect Guttman pattern, the
value of C will be zero. C is therefore a measure of the degree to which the person’s
item score pattern departs from the Guttman Perfect Pattern. However, C does not
have a fixed upper bound and is difficult to interpret (see Meijer and Sijtsma, 2001).
Sato suggested that response patterns with C over 0.50 may be regarded as
aberrant (also see Huang 2012). Karabatsos (2003) suggested to use 0.53.

Harnisch and Linn (1981) proposed the Modified Caution Index (MCI) which also is a
measure of the departure of the response pattern from the Guttman perfect response
pattern:

Ml — Cov(X, p) —Cov(X,, p)
Cov(X ., p)—Cov(X', p)

(6)

10
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where X/ = examinee n’s response vector containing correct responses only for the

most difficult J —r, items. Values of MCI vary from O (perfect Guttman pattern) to 1

(reverse Guttman pattern, see Meijer and Sijtsma, 2001; Meijer and Tendeiro, 2014).
A critical value of 0.30 was proposed to identify aberrant response patterns.

Sijtsma’s H' Index

The non-parametric index H; proposed by Sijtsma (1986, also see Karabatsos,

2003; Meijor and Tendeiro, 2014) looks at the covariance between the item response
pattern of a test-taker n and the covariance of the other test-takers and is defined as:

> (B = Bul3) -
HT — m=n
" Zmin[ﬁn(l_ﬁm)l(l_ﬁn)ﬁm]

m=n

where:

B, = proportion correct for test-taker n over the J test items
LS., = proportion correct for test-taker m over the J test items,

.. = covariance of item scores between n and m

Values of H' range from -1 to 1. Persons with low values of H' are assumed to
have aberrant response patterns. When the covariance between a person’s

response pattern and those of other test-takers is zero, HT will be zero. When the
covariance is negative, H' will be negative.

Non-parametric cumulative sum (CUSUM) statistics

When studying the responses of persons taking computer adaptive tests (CATS),
Bradlow et al. (1998), van Krimpen-Stoop and Meijer (2000, 2001) and Meijer (2002)
proposed the use of the item response theory (IRT) based cumulative procedure to
detect mis-fitting persons (see later discussion). This procedure can also be applied
to other forms of tests such as computer based linear tests (CBTs) and paper and
pencil (P&P) tests. The idea of using CUSUM statistics in person-fit studies rests on
the fact that aberrant behaviour frequently occurs during just one or more of its
segments rather than being manifested during the entire test (Armstrong and Shi,
2009). Armstrong and Shi (2009) presented a cumulative sum approach which is
based on the likelihood of two probabilities and does not rely on the use of item
response function under the IRT framework. The CUSUM statistics are conditioned
on the number of correct (NoC) scores. The probability, p;(s), of a correct response

to the ith item, given the total number of correct answers s on the test, is assumed to
be the same for all test takers. This probability can be estimated as the unconditional

11
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empirical probability of a correct response. The probability of a person with aberrant
response on the item, p; (s), is represented as a upward or downward shift of p.(s) .

The difference between p; (s) and p;(s) can be tested for significance using the

likelihood ratio test for the upwards shift »° or downwards shift y.":

BN O) M O
| [p O [p (&)
BRI (YO CXO)) i
R YOI X0

where:

X, = the score on item i
g; [p;(s)] and g, [p,(s)] = the upward shift and downward shift functions
meeting the following conditions for a test composed of J items:

g7 (k) =1
g7 (0)=0
0[p,(s)]> pi(s), O<s<J
g [p(s)l< pi(s), O0<s<J

9. [p;(s)] and g, [p,(s)] can be approximated using quadratic functions:

g [P ®]=r" [P +s' pi(s)+t7, i=12,..,]
giL[pi (S)] = riL[pi (S)]2 + SiL P (S) +tiL’ i=12,..,J

In the above equations, the parameters can be estimated using three points meeting
the conditions described above. An aberrant pattern can be identified after multiple

responses using two of the CUSUM statistics, designated as C;’ and C

respectively, after answering i items:

C’ =max(0,C7, +77), 1=12..,J

Cl=min(0,C-, +7Y), i=12,.,3 ®)
CY=Ct=0

For a given level of significance «, the upper bound UB, h, ,and the lower bound LB,

h,, can be estimated empirically. Respondents with values in any of the element of
the CUSUM statistics beyond the critical values are classified as aberrant
respondents.

12
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A more general situation is that the aberrant behaviour can be associated with an
upward ability shift on some items and downward shift for some other items. In this
case, the following statistic was proposed:

CiLR = maX(CiU )— min(CiL) 9)

The CUSUM method based on C'® statistic is denoted as CUSUM ;. Critical values

for the three CUSUM statistics can be estimated empirically using Monte Carlo
simulations.

Parametric person-fit indices

While the non-parametric person-fit statistics are generally derived empirically based
on the observed response pattern of the individual concerned and the response
patterns of the other test-takers, parametric indices are based on theoretical item
response models. Frequently used IRT models for dichotomous items include the
one-parameter logistic (1PL) model (which is the same as the Rasch model
mathematically), the two-parameter logistic (2PL) model and the three-parameter
logistic (3PL) model (see Hambleton et al, 1991). In IRT, the underlying ability or
latent trait of an examinee to be measured by the test and the characteristics of the
items in the test are specified, and a mathematical function (item response function —
IRF) is used to describe the probability that a person will have a specific score on a
particular item given his/her ability and the characteristics of the item. The 3PL
model can be expressed as:

Da. (0. - .
c.+(@0-c) exp(Da, (6, ~9,)) when x =1
! "1+exp(Da(g, - 5,))
P, = (10)
A-c)) L when x =0
1+exp(Da; (8, -9,))
where:
D =1.7,

a; = the discrimination parameter of item ]
¢; = the guessing parameter of item |

6, = the ability of person n

0, = the difficulty of item ]

X =1 or 0, the score of person i on item j
P« = the probability of person i scoring x on item |

13
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When the guessing parameter is zero, the 3PL model becomes the 2PL model.
When the discrimination parameter is 1, the 2PL model reduces to the 1PL model or
the Rasch model (see Rasch, 1960; Wright and Stone, 1979):

exp(%, ~9;) when x =1
1+exp(d, —5;)
F)ijx = (11)
1 when x=0
1+exp(d, —5;)

The Wright’s weighted and unweighted person-fit statistics

Wright and Stone (1979) proposed the unweighted and weighted person-fit statistics
(also termed outfit and infit statistics) which are residual based for the Rasch model
for dichotomous items:

_li(x nJl)
J&S PP

nj1" njo

Z(an - F)njl)2 (12)
Z IDnle)njO

Values of U and W can vary from 0 to infinity. When a person’s response pattern
conforms to that predicted by the Rasch model, these indices will be close to 1. The
unweighted U is more sensitive to unexpected responses to items with difficulties
that are far from the ability of the person, while the weighted W is more sensitive to
unexpected responses to items with difficulties that are close to the ability of the
person. For both indices, when the value is less than 1, there is less variability in the
response pattern than the model predicted (over-fit). When the value is above 1.0,
there is more variability in the observed responses than the model predicted. Both
indices follow a chi-square distribution with a mean of 1.0 (see Wright and
Panchapakesan, 1969; Wu and Adam, 2007). Views on the values of these fit
statistics that can be used to identify misfitting persons vary. Persons with infit
statistics in the range from 0.70 to 1.30 are normally regarded as fitting the Rasch
model well (Keeves and Alagumalai, 1999; Linacre, 2002). However, some
researchers set the range of acceptable values for infit and outfit MNSQs even
larger, from 0.60 to 1.40 (Tan and Yates 2007; Wong, McGrath and King 2011).
Linacre (2002) suggested that when model fit statistics are above 2.0, the
measurement system would be distorted.

14



Statistical techniques for studying anomaly in test results

The Trabin and Weiss’ D(0) index

The index D(#) proposed by Trabin and Weiss (1983) is similar to the unweighted
person-fit statistic proposed by Wright and Stone (1979):

D(0) = ZS:JL(Z[XM - Pm-l]zj (13)

s=1 jes
where:

J, = the number of items in subset s
S = number of item sets in the test

Instead of using individual items to calculate the fit statistics, the items are grouped
based on their difficulty when calculating the fit statistics.

The likelihood indices

The indices W, U, and D(#) discussed above are based on the difference between

the observed and the IRT model predicted response patterns. There are other
approaches that have been proposed to investigate person model fit. In IRT or
Rasch modelling, given the response patterns from a group of persons and the IRT
model, both person and item parameters need to be estimated, and this normally
involves the use of the likelihood function. In the case of the logistic models for
dichotomous items, if the unidimensionaility and local independence assumptions of
the models are met (see Hambleton et al., 1991), for a given response pattern

X, =(X,1, X0 X,3), the likelihood of a person with ability €@ to get this response
pattern will be Ln(e)zl_[;:lp Xui p

njl njo

" The log value of the likelihood, | (), is:

1,(6) = In(L,(6) = Y[X 1Py, + A X, Iy,

Once an observed response pattern is given, the ability & of the person can be
estimated by maximising the log likelihood | (6) if the item parameters are known.

For the same ability or total test score, different response patterns will produce
different maximum values of | (6) (l,):

= I0[L, (6= YIX, NPy (6,)+ (- X, INP(6,)] (14

A higher maximum value of the likelihood will indicate that the response pattern
conforms better to that predicated by the IRT model than a response pattern with a

15
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lower value. Levine and Rubin (1979) suggested to use |, as a person-fit index.

When the IRT model is the 1PL model or the Rasch model, Molenaar and Hoijtink
(1990, also see Meijer and Sijtsma, 2001) showed that:

S i
l, = ZIn[lJr exp(6, —o;)]+r0, —anj5j
j=1

i=1

This is because for the Rasch model, the total score is a sufficient statistic. Only the
last term in the above equation is influenced by the person’s response pattern.
Therefore, it was proposed as a fit statistic:

J
M =-> X5, (15)

=1

M is easy to calculate. Molenaar and Hoijtink (1990, also see Meijer and Sijtsma,
2001) proposed three approximations to the distribution of M: (1) complete

enumeration; (2) Monte Carlo simulation; and (3) a y* distribution, in which the
mean, standard deviation (SD), and skewness of M are taken into account.

Drasgow et al (1985) suggested a scandalised form of |,, |,, which is approximately
asymptotically standard normal:

J

Iy — Z[Pnjl In Pir + (- Pnjl) In(1- Pnjl)]
| = Io — E(Io) — j=1 (16)

z \/Var(lo) \/i Pnjl(l_ Pnjl)[ln( Pnjl /(1_ Pnjl)]Z

Since it is a standard normal distribution, when |1, > 2|, the response pattern can be

regarded as aberrant. Values less than -2.0 indicate that there is more variability in
the observed response pattern than the model predicted (under-fit). In contrast,
values larger than 2.0 suggest there is less variability in the person’s response
pattern the model predicted (over-fit). Meijer and Sijtsma (2001) suggested to use a

value of less than -1.65 for |, to flag aberrant response patterns.

Molenaar and hoijtink (1990) and Reise (1995) proved that when the true ability
values are replaced with the ability estimates based on the sample, the asymptotic

distribution of |, is not a standardised normal distribution (also see Armstrong et al.,
2007). Snijders (2001) modified |, to make an index denoted as I; which is
asymptotically standard normal distribution with sample ability estimates. Magis et al.
(2012) suggested that the main reason that I has not been widely used is because

16
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the original paper by Snijders (2001) was technically complicated. They then derived
the index in a more accessible manner:

= @) —E©O) +¢,(@O)(0)
W,

17)
where:
V0,60 =3 P, ()0, () ()

c,(0) = ZJ: P/(O)w,(0) /i P/ (0)r;(0)
VT’J’ (9) - Wj (9) —C, (e)rj (9)
0(0)+ I, PO, (6) =0

P/() = the first derivative of P;(6)
w; (0) = the weight to be specified
r;(0),1r,(¢) =functions dependent on the IRT model and the estimation
method used
The corrected index |, takes into account the sampling variability of the ability

estimates when calculating the expectation and variance of the likelihood. Sinharay
(2015a) suggested ways to improve the performance of I; further.

The extended modified caution indices

Tatsuoka (1984) extended the non-parametric Caution Index to the three parameter
logistic model and proposed four indices.

Cov(X,, p)
Cov(P,, p)
Cov(X,,G)
Cov(P,,G) (18)
Cov(X,,R)
Cov(P,,G)
Cov(X,,P)
Cov(P,,P,)

ECI1=1-

ECI2=1-

ECI4=1-

ECI6=1-
where:

p=(p,, P,y Py), item vector of proportion correct
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P, =(Py, Pyyse Poyp), vector of probabilities of correct answers by person n

n

G = item vector of average of probabilities of correct answers by all persons

As can be seen, the indices were derived by replacing the easiest response vector in
the Caution Index with the expected probabilities of correct answers on all the items
in the test, and the item proportion correct vector is replaced with the vector of the
average modelled probabilities of correct answers or the expected probabilities of
correct answers on all items. The expected value of ECI1, ECI2 and ECI4 is zero,
while that of ECI6 is a function of the person ability. Tatsuoka further standardised
these indices by subtracting their expected values and then dividing by their
standard errors which can be estimated based on the IRT model used:

ECIk — E(ECIK | )
SE(ECIK | 6)

SECIk =

(19)

where:

E(ECIK | &) =the expected value for the person with ability 6.
SE(ECIk | 8) = the standard error
k=1,2,4,orb6.

The use of the standardised indices takes into consideration the fact that the original
indices tends to inflate values at the extreme values of the ability parameter & as
the error at the extremes are larger than those in the middle of the ability range.
Further, they can be interpreted more easily when investigating the nature of
aberrant responses.

Parametric cumulative sum (CUSUM) statistics

Bradlow et al. (1998), van Krimpen-Stoop and Meijer (2000, 2001, see also Egberink
et al., 2010) and Meijer (2002) proposed the use of the cumulative sum procedure to

detect mis-fitting persons in computer adaptive testing (CAT). Assume that p,(0) is
the probability of a person with ability & obtaining a correct answer on the ith
dichotomous item in the test (for example, the response function representing the
3PL/2PL/Rasch model), a simple statistic T defined as a weighted value of the
residual can be used as a measure of inconsistency (see Meijer, 2002):

T.= 20 - pO)]

where J is the total number of items in the test and X; (0 or 1) is the observed score.
Two cumulative statistics can be defined as the sum of the T statistic:

18



Statistical techniques for studying anomaly in test results

C =max[0,T; +C/,]
C, =min[0, T, +C,] (20)

C;=C; =0

Where {C.'} and {C. } reflect the sum of the consecutive positive and negative

average residuals respectively. If some appropriate upper and lower bonds, UB and
LB, can be established, a response pattern can be classified as aberrant or unlikely if

any of the element in {C."} and {C. } is above or below the bounds:

C/>UB, i=12,..,J

(21)
C'<LB, i=12,..,3J
The upper and lower bonds can be established using simulations or empirically
based on the obtained response data (see Meijer, 2002). van Krimpen-Stoop and
Meijer (2002) extended the CUSUM procedure for tests composed of polytomous
items (see later discussion).

3.1.2 Tests composed of polytomous items

While person-fit analysis involving test composed of dichotomous items has been
carried out extensively, there has been considerably less research involving tests
composed of polytomous items, particularly in the area of using person-fit analysis to
identify aberrant respondents. Both non-parametric and parametric approaches have
been used to study misfitting persons.

Non-parametric indices
The generalised G indices for polytomous items

Emons (2008) discussed how the concept of Guttman error for dichotomous items
could be extended for polytomous items. It is assumed that a score on an item is
associated with the number of steps that have been successfully past when
answering the item. The introduction of the concept of item steps makes it possible
to transform a response or score on an item into an item response vector composed
of scores on a series of dichotomous items. The number of elements in the item
response is the maximum available score on the item M. Each element in the item
response vector represents a step. If a score on the item is m, then the vector will
have 1s for the first m elements and Os for the M-m elements. When all the item
response vectors are added for a person, an overall response vector is created. To
develop the Guttman index for these dichotomous items, the steps in all the items
must be ordered according to their difficulty to form the final response vector for the
person. The difficulty of a step in an item is defined as the proportion of respondents
with a score equal to or higher than the step score on the item. The item steps within
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an item are always ordered. Once the item steps are ordered, the Guttman index

(the number of Guttman errors) for person n (G* ) can be calculated in the same
way as that used for dichotomous items:

Jua1 Iy
G" = Zl: ZlYi(l_ yi) (22)
i=l  j=i+
where:
y; = the value of element i (or step) in the response vector y =(y,, Y, ;)

Ju = the total number of item steps or the length of the response vector y

When the response pattern is a Perfect Guttman Pattern (ie the easiest items were
answered correctly, without any partial scores), then the value of G is 0. When alll

the items in the test are dichotomous items, G reduces to the index for
dichotomous items.

Emons (2008) also extended the normalised Guttman index for dichotomous items to
polytmous items by dividing G* by the maximum possible Guttman errors
max(G” | X,) for a given test score x_ — Sy,

aio— S

" ma(G X ) )

The values of G, vary from 0 (perfect Guttman pattern or no misfit) to 1 repsenting
extreme misfit. Emons suggested that since the item steps in the response vector
are structurally dependent, max(G” | X,) cannot be expressed in closed form. He
developed a recursion algorithm to estimate it.

The generalised U3 person-fit statistic U3" for polytomous items

Emons (2008) also proposed a generalised form of the U3 index for polytomous
items (U3") which is defined as follows:

U3® - max(W[X,)-W(y)

= . (24)
maX(W | X+)_m|n(W | X+)

where:

7
1-7,
7, = the difficulty of step k

W(y) =y, logl-")
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Values of U3 vary from 0 (suggesting perfect fit) and 1 (indicating extreme misfit).
As with the calculation of the normalised Gutmman index for polytomous items,
max(W | X,) and min(W | X,) cannot be expressed in closed form and can be
calculated using a recursion method (Emons, 2008).

Parametric indices

The Rasch model was originally developed to analyse tests composed of
dichotomous items (see Rasch, 1960) and has been extended subsequently for
analysing polytomous items. These extended Rasch models include Andrich’s
Rating Scale Model (RSM), Masters’ partial credit model (PCM), and other models
(see Andrich, 1978; Masters, 1982; Wright and Masters, 1982; Muraki, 1992). The
PCM states that, for a polytomous item with a maximum available score of m (the
number of score categories minus 1), the probability P(€,X) of an examinee with

ability @ scoring x on the item can be expressed as:

epoX:(H—5k)

k=l forx=12,.,m

1+ iexp[Z(G -5,)]

P(8,x) = (25)

1

1+ er:exp[zl_:(e -5, )]

forx=0

where ¢, is the location of the k" step on the latent trait continuum and is referred to
as the item step parameter associated with a score category (also frequently referred
to as step difficulty or threshold). However, 6, cannot be interpreted as the difficulty
of scoring a score of k on the item. P(8,X) is also frequently referred to as category
response function (CRF) or item category probability function (CPF). The step
parameter ¢, represents the location of the score category on the ability continuum
beyond which the probability of achieving a score of k is higher than that achieving a

score of k-1. The PCM reduces to the Rasch model for dichotomous when the
number of response categories is two.

The generalized partial credit model (GPCM) proposed by Muraki (1992) represents
an extension of the 2PL model for dichotomous items to polytomous items. The
model is also an extension of the Maters’ partial credit model by introducing a
discrimination parameter for items. In the GPCM, the probability P(8,X) of a test-

taker with ability & scoring x on the item can be expressed as:
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exsz:a(G— 5,.)
P(0,x) = —= x=012,.,m (26)

2 exp[> a0 -4, )]

1=0 k=0

where a is the item discrimination parameter. When the maximum score on the item
mis 1, the GPCM becomes the two-parameter logistic model. When the item
discrimination parameter is 1, the GPCM reduces to the PCM.

As suggested by Sung and Kang (2006), the graded response model (GRM)
proposed by Samejima (1969) can also be viewed as a generalization of the 2PL
model for dichotomous. The model uses the 2PL item response function to model
boundary characteristic curves across score categories or the cumulative probability
of a response higher than a given category x. The probability of scoring a specific

score X, P, (6), on the item is then calculated as the difference between the
cumulative probabilities of achieving the score below the specified score P, (6) and

the specified score P, (0) :

P.(6)=P.,(6)-P(6)
P*(0) = exp[a(@-4,)] (27)
" 1+exp[a(@-46,)

As indicated by Sung and Kang (2006), the GRM is different from the GPCM and
PCM in that it requires a two-step process to compute the conditional probability for
a test-taker responding in a particular category.

The standardised likelihood index I} for polytomous items

The standardised likelihood index for dichotomous IRT models discussed above can
be extended to polytomous IRT models such as those presented above. Drasgow et
al. (1985) provided a general form of the index for polytomous items (see also
Sinharay, 2015b):

Ip IOp _E(Iop)

P Yo/ 28
yvar(lg) )

where:
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mj

=335, (<) log[P,. (9)]

o1 k1
J mj

E(I y) = ZZ ij @) IOg[ij 0]

j=1k=1

var(If) = Z[ZZF’,k(G) («9)Iog(P,-k(e))log(P,»kw)/P,-.(@))}

Where m; is the maximum score of item j, and &;(k) is an indicator function which is

1 if k=j and 0 otherwise. I? will be asymptotically normally distributed. Sinharay

(2015b) recently discussed this statistic for tests containing a mixture of dichotomous
and polytomous items.

Other person-fit statistics for the Rasch model

For the partial credit model, person-fit statistics similar to those for the Rasch model
based on residuals can also be derived. The weighted and unweighted person-fit
statistics are defined as follows:

TR

J j=1 an

J

> (X —Ey) (29)
WP =22

where the expected score on the item and the variance are calculated from:

nj = Z njk (9)

k=0

MB

Wn = (k Enj) njk (0)

k

I
o

These person-fit statistics have been widely used as general diagnostic tools to
assess person model fit (see Wright and Masters, 1982).

Cumulative sum (CUSUM) statistics

van Krimpen-Stoop and Meijer (2002) and van Krimpen-Stoop et al. (2010) extended
the CUSUM procedure for tests composed of polytomous items used in computer
adaptive tests. The residual for a person with ability & on a polytomous item i with
m+1 response categories contained in a test with J items is calculated from:
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T - %{x -3 P, j)} (30)

where X is the observed score and P(6, ) is the probability of scoring a score of

on the item with a maximum score of m described by a polytomous IRT model such
as the PCM and GPCM. The CUSUM statistics defined for dichotomous items
discussed previously can be similarly defined for polytomous items and used for
identifying aberrant response patterns.

A person-fit index derived from factor analytic models

Ferrando (2007, 2009; also see Clark, 2012; Clark et al., 2014) discussed the use of
factor analytic models to study misfitting respondents. For a one-factor analytic

model, the score on item j from person n, X, is modelled using a linear function:
an = U, +ﬂjt9n + &y

where 4; and 4, are the item parameters, and ¢, is a factor score and ¢,; is the

random error with variance o’. The expected score of X ; on the itemis u; +1,6,.
A residual based person-fit statistic can be defined as:

2
S| X —u;, —A.60
Ico, =Z{ U "} (31)

=1 Oy

When sample estimates are used, lco is distributed as y* with J-1 degree of

freedom. The one-factor analytic model was subsequently extended to multiple
factors. For a K-factor model, a person-fit statistic can be similarly defined:

2
SV X. —u-A1.68,—.—1.0
Mico, = Z|: nj — Hj j1%m iK nK:| (32)

= O
Mico, is also y? distributed, with the number of freedom being J-K. Clark et al.

(2012, 2014) discussed the potential application of the difference in person-fit
statistics between the one-factor model and a two-factor model as a person-fit
statistic:

Milco,, 4 = lco, —Mlco, (33)

This statistic should also be y° distributed with a degree of freedom of 1. Clark et al.

(2014) used this statistic to detect cheating due to prior knowledge of portions of
items in a test. They argued that if a subset of items in a test had become
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compromised and a subset of test-takers took the test with prior knowledge of these
items, additional covariance amongst these compromised items for cheating test-
takers may result in improved fit at the person level for individuals who engaged in
misconduct when a second factor is added to the initial unidimensional model.

3.1.3 Performance of person-fit statistics

The power (the detection rate) and accuracy (Type | error rate or false positive rate)
of an aberrant detection statistic under a nominal Type | error rate or « level defined
by a theoretical or empirical critical value are normally studied using simulations
under different conditions (see Meijer and Sijtsma, 2001; Karabatsos, 2003;
Thiessen, 2008). The power of a person-fit index can be affected by a number of
factors such as the ability distribution of the test-takers involved, the difficulty
distribution of the items, the discrimination distribution of the items, test length, the
types of aberrant responses, the proportion of misfitting items, and the proportion of
aberrant respondents (see Meijer and Sijtsma, 2001; Karabatsos, 2003; Emons,
2008; Tendeiro and Meijer, 2013; Meijer and Tendeiro, 2014). Meijer and Sijtsma
(2001) and Meijer and Tendeiro (2014) also indicated that, the power of person-fit
statistics to detect aberrant response patterns increases with increasing item
discriminations, test length, and a large spread of item difficulties.

Using simulations, Meijer (1994) demonstrated that the power of the G indices varied
from 24% to 100% under different simulation conditions. He found that these
Guttman person-fit statistics can be as powerful as or even better than some more
complex person-fit statistics in detecting aberrance associated with cheating and

guessing. Both G and G~ are easy to calculate and interpret. Thiessen (2008)
suggested that the disadvantages of the Guttman’s G statistics are that each
Guttman error is given equal weight and there is no consensus as to the critical
values that should be used to classify aberrant score patterns.

Using the 3PL model and simulations, Drasgow et al. (1987) looked at the
performance of a range of person-fit indices in detecting aberrant response patterns

and found that the standardised likelihood index |, is one of the most effective

indices in detecting aberrant test-takers, with detection rates varying from 35% to
98% at a false alarm rate of 5%, depending on the simulated conditions. Similarly,
using the Rasch model and simulations, Li and Olejnik (1997) compared the

performances of a range of person-fit statistics including |, , the standardised

extended caution indices SECI2 and SECI4, and the standard normal form of the
Wright’'s W and U indices. They found that these indices performed equally well
regardless of the type of misfit and test length, with average detection rates varying
from 37% for a 30-item test to 51% for a 60-item test. In their study, the Type | error

rates or false positive rates were less than the nominal level of 5% used. The |,
index was recommended for detecting spuriously high response patterns. Thiessen
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(2007) also used simulation studies to investigate the effectiveness of U, W, |, and

MCI in detecting cheaters and found that MCI was able to detect 86% of simulated
cheaters. For the other three parametric indices, the detection rates were slightly

less, varying from 66-80%. The standardised likelihood index |, was found to
produce the lowest false positive rate. Results from simulations by Armstrong et al.
(2007) indicated that the detection power of the |, index was largely hinged on test

characteristics, particularly test difficulty. They therefore suggested that it should be
used with caution in an operational testing environment.

Karabatsos (2003) compare the performance of 36 non-parametric and parametric
person fit statistics in detecting five types of aberrant response patterns for tests
composed of dichotomous items: cheating, careless responding, lucky guessing,
creative responding, and random responding under different conditions. The study
included different percentages of aberrant examinees and test length. It was found
that the sensitivity of these indices was affected by the percentages of simulated
aberrant respondents. The most effective five person fit-statistics in detecting

aberrant-responding persons were found to be the index H_, the C index, the MCI
index, the U3 index, and the D(#) index. Further, H' out-performed the parametric
D(#@) and the C and MCI indices. The U3 index also outperformed many well-known

parametric person-fit statistics. Huang (2012) compared a range of parametric and
non-parametric person-fit statistics and found that non-parametric indices performed
better than IRT-based parametric indices. Tendeiro and Meijer (2014) recently
compared different group-based non-parametric statistics for dichotomous items and

concluded that, for a given Type | error rate, H_, followed by U3, and C, had
generally the highest power to detect misfitting response vectors.

Armstrong and Shi (2009) found that the power of CUSUM ,, varied from 47% to

100% in detecting aberrant respondents, depending on the simulation conditions and
the specified a level, and the Type | error rates were close to the « values. They
also found that the proposed CUSUM procedure outperformed considerably other
selected model-free non-parametric statistics. The distribution of CUSUM statistics
can also be used to examine where the aberrant behaviour happened in the
response process.

Emons (2008) used simulations to compare the performance of the three non-
parametric person-fit statistics G*, G, and U3”, and the parametric statistic |” for

tests composed of polytomous items and found that the detection rate of these
indices varied from slightly over 10% to nearly 80% at the 0.05 significance level,
depending on the type of aberrant responses and the number of misfitting items. The
non-parametric statistics performed almost as well as the parametric statistic in
many situations. For a real dataset, he found that the correlations between these
non-parametric indices ranged from 0.88 to 0.89.
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Using simulation studies, Clark et al. (2014) found that Mico,,; performed better than
Ico in identifying cheating persons. The detection rate of Mlcoy, varied from 12%

to 89% at the 5% significance level, depending on the simulated conditions. The
Type | error rate was generally small than the nominal value of «. They observed
that person-fit statistics like 1co measure the difference between observed and
expected performance on an item. However, the difficulty of the items which will
influence the expected scores is estimated from the observed responses from all
test-takers. If a larger proportion of cheaters are present, their influence will make
the exposed items to become easier than they should, which will result in smaller
residuals when the observed performance on the items is compared with the
expected performance. This will reduce the power of residual-based person fit
statistics like Ico . The Ico difference method seems to be more robust compared
with the Ico approach. They further suggested that increasing the proportion of
cheaters can improve performance of the Ico difference method when exposed
items have a wide range of difficulty, since more cheaters will help produce better
estimates for the second factor.

3.1.4 Practical applications and computer software

A large number of person-fit indices have been developed and used operationally.
They vary in their power to detect different types of aberrant responses. The
situation is further complicated by the fact that even for the same type of aberrant
behaviour, there may be several indices available which may perform differently. As
indicated by Tendeiro and Meijer (2014), the existence of a large number of person-
fit statistics is useful but can also cause confusion as to which of them should be
used when a decision to select the best statistics is needed. Tendeiro and Meijer
(2014), Meijor et al (2015) and Tendeiro et al. (2016) attempted to provide practical
guide for selecting person-fit statistics. The criteria for selecting a person-fit statistic
would include:

¢ high detection power

¢ |ower false positive rates

¢ interpretability of the critical values

e practicality in terms of resources required to produce the statistic

It is worth noting that, all person-fit statistics, particularly non-parametric person-fit
statistics, are generally sensitive to violations against the Guttman model (Meijer and
Tendeiro, 2014). IRT based parametric indices will also be sensitive to violations of
model assumptions. When comparing the performance of the non-parametric indices
and parametric indices, Karabatsos (2003) observed that parametric fit statistic uses
the dataset twice, once for the estimation of the model parameters to construct the
predicted response patterns and once again to measure its fit to the same predicted
response patterns. He suggested that parametric person-fit statistics, based on IRT
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model parameters, suffers from this dependence between data and parameter
estimates. Non-parametric person-fit statistics on the other hand, circumvent such
dependence, which may explain why some of the non-parametric person-fit indices
performed better than some of the well-known parametric fit statistics. The
advantage of non-parametric approaches is that the underlying non-item response
theory model is less restrictive with respect to the data than their parametric
counterparts (Emons, 2008). Tendeiro and Meijer (2014) suggested that a high
percentage of respondents simultaneously flagged by several person-fit indices
could be an indication of aberrant response behaviour.

Tendeiro (2015) has developed an R Package which implements a range of non-
parametric and parametric person-fit statistics for tests composed of both
dichotomous items and polytomous items. These are listed in Table 1 below.

Table 1 Person-fit statistics available in the R Package PerFit (extracted from Meijer
et al, 2015)

Type of data
Type .Of Statistics References
statistics Dichotomous | Polytomous
r.pbis | Donlon and Fischer (1968) X
C Sato (1975) X
der Flier (1980); Meijer
G.G van X
n (1994)
A, D, E | Kane and Brennan (1980) X
U3, ZU3 | van der Flier (1982) X
Non- c” Harnisch and Linn (1981) X
parametric
NCI Tatsuoka and Tatsuoka X
(1982, 1983)
HT Sijtsma (1986) X
G” Molenaar (1991) X
GP Molenaar (1991), Emons X
N (2008)
us® Emons (2008) X
rasgow et al.
l, D 1. (1985 X
Parametric IZP Drasgow et al. (1985) X
I Snijders (2001) X
z
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3.2 Answer copying and similarity analysis

Answer copying involves a test-taker (the copier) copies answers from another test-
taker or other test-takers (the source/s) (see Zopluoglu, 2017). The methods
discussed in this section are for test composed of multiple choice questions (MCQs).
Most of the statistics used for detecting answer copying are based on the
comparison of the amount of overlap or similarity in answers between two test-takers
with the normal amount that would be expected if the two test-takers were known to
have answered the questions independently of each other. The overlap can be
focused on identical incorrect answers or both incorrect and correct answers. If the
observed amount of overlap is significantly different from the expected normal
amount, copying is assumed to have happened. Most copying indices involve the
estimation of the probabilities of the copier to select particular answer alternatives of
the items in the test that the source selected. Both CTT and IRT models have been
used in deriving copying indices (Wollack, 1997, 2004, 2006; Sotaridona and Meijer,
2003), with the critical values established empirically for CTT and theoretically for
IRT. When the copier and the source are not specified, the copying index is referred
to the similarity index.

Some indices may be more effective in detecting copying than others, depending on
the types and amount of copying. Wollack (2006) suggested there are broadly three
types of copying:

e random copying where the copier copies the answers to items randomly from the
source(s)

e strings-based copying where the copier copies consecutive strings of items from
the source

e mixed copying where a combination of random and strings-based copying is used.

Wollack classified copying indices into two broad categories, depending on the way
the responses are used:

¢ indices that incorporate information from only incorrect responses
¢ indices that use information from all responses

3.2.1 Answer copying and similarity indices
Angoff’'s B index and H index

Angoff (1974) proposed to use the B index to study the number of identically
incorrect answers between the copier and the source, in comparison with those of
test-takers with similar values for the product on incorrect answers between two test-
takers (see also Wollack, 2006). The calculation of the B index involves the
following steps (Wollack, 2006):
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e for the alleged copier and the source, work out the number of identical incorrect

items, which is denoted as Q;;, and the product of their number of wrong answers
WW; which is used as the conditioning variable

e divide the dataset into strata such that the test-takers within a stratum are
homogeneous with respect to the conditioning variable W,W,

e for the stratum to which the copier and the source belong, work out the mean of the
Q values of all pairs of test-takers and their standard deviation, denoted as Q,,,

and Sowiw,- , respectively. The B index is defined as:

B Qij _6Wiwj
S

B (34)
Q\Nin

B therefore assesses the departure of the observed number of identical incorrect
answers between the copier and the source from the mean of pairs of test takers

with similar values of WW, . It is assumed that B follows the standard normal

distribution. Large values of B would be an indication of answer copying.

Another index proposed by Angoff (1974) is the H index which is used to study the
magnitude of the maximum number of identical incorrect or omitted items in any
string of identical responses in comparison with those of test takers with similar
number of omitted or incorrectly answered items. The calculation of the H index
involves (see Wollack, 2006):

e for the alleged copier c and the source s, work out the maximum number of identical
incorrect or omitted items in any string of identical responses, which is denoted as

KCS

e the dataset is partitioned into raw score groups. The group which contains the one
with the higher raw score of ¢ and s is used as the comparison group
e for the comparison group, work out the mean of the K values of all pairs of test-

takers and their standard deviation, denoted as K, and S, , respectively. The H
index for C and S is defined as:

— SCs T+ (35)

It is also assumed that H follows the standard normal distribution and large values
would suggest answer copying.

The K indices

Holland (1986) proposed a statistic, the K -index, to assess the degree of unusual
agreement between the incorrect answers on a multiple choice question test of two
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test-takers, the copier (c) and the source (s). The following steps will need to be
taken to calculate the K index (see Sotaridona and Meijer, 2002):

e determine the group of test-takers with the same number-incorrect score as the
copier (subgroup c’). Denote the total number of test takers in the group as n,

o for each test-taker in group c’, determine the number of items that match the
incorrect answers of the source

e foracopier cingroup c’, denote his/her number of matched incorrect answers with
the source as m, and the number of test-takers whose number of matched

incorrect answers with the source is greater than or equal to m,, as n’. The K

index for the copier is calculated as the ratio of n’ to n,:
Kc = (36)

That is the K index is defined as the proportion of test takers in subgroup ¢’ whose
number of matched incorrect answers with the source is greater than or equal to that
of the copier.

The logic of using K, as an indicator of copying is that when K is very small, there

is statistical evidence that test taker c copied from the source s. As Sotaridona and
Meijer indicated that the reason for K to be calculated conditional on the number of
incorrect scores of the suspected copier is that the number of matching incorrect
scores generally depends on the ability levels of ¢ and s. the number of matched
incorrect answers will be small when either of the copier or the source or both have
high abilities (with many correct scores). When both test-takers have many wrong
answers, the matched number of incorrect answers will be large. When the sample

size is small (for example less than 100), n, can become small which will affect the

accuracy of the value of the K index. For small samples, Holland (1996) suggested
to use the binomial distribution to approximate the distribution of matched number of
incorrect answers for a subgroup. For subgroup c¢’, calculate the mean of empirical
agreement of incorrect answers between the members in the group and the source:

Ne:
me;
1

=]

¢ n

¢

where m,, is the number of matched incorrect answers between test-taker i’ in
subgroup ¢’ . Assuming that the number of wrong answers of the source is w,, the
average percentage agreement between the subgroup ¢’ and the source is:
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p:, is used as the success probability parameter in the binomial distribution. The

corresponding K index, which is denoted as K, is defined as the probability of the
matched incorrect answers greater than or equal to m,, and is calculated from:

* Ws WS * *\W. —
Kc = z (g ]pc'g (1_ pc) o (37)
g=Mc¢

The value of p,, is affected by the sample size. When the size is small, its reliability

declines. Holland (1996, see also Sotaridona and Meijer, 2002) suggested that p:,
be approximated using a piecewise linear function:

A :{a+bQ, if0<Q, <0.3 (38)

"~ |[a+0.30] +0.4b[Q, —0.3] if0.3<Q, <1

where:

r=12,..,R. Ris the total number of groups each of which contains test-takers
with the same number of incorrect answers.

Q, = the percentage incorrect score of all test-takers with r incorrect answers

a,b = intercept and slope parameters

Sotaridona and Meijer (2002, see also Wollack, 2006) modified the K™ index further
to produce the K, index:

— o (W) . .
K= 2. (g ]ng(l— p)" " (39)
g=Mc¢

which uses a different approach to calculate the probability: p; =b, +bQ, +b,Q,’
where by,b, and b, are regression coefficients. Wollack (2006) suggested that the

main advantage of K, over the K indices is that the former uses information from

all test-takers to compute the probability while the latter uses information only from
those with the same number correct score as the source.

The g, index

The g, index index proposed by Frary et al. (1977) compares the number of

identically answered items by the copier and the source against the expected
number of identically answered items (see Wollack, 1997). If the answers from the
source are treated as fixed and the probability of the copier answers item j, B.(u),

exactly as the source’s answer, u;, is known, then the expected number of items
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that C answered identically as the source s, E(h |Us), is the sum of the
probabilities overall items J in the test:

E(hcs |Us) :ZPC(uiS)

where h., is the observed number of identically answered items, and Uy is the

response vector for the source S. The variance of the number of matched answers is
given by:

J
0§CS|US = Z Pe (Ui )IL = P (ujs)]
j=1
The g, index for the pair is defined as:

hes — i Pe (Uis)
L (40)

g, = 3
\/Z Pe (Uig )1 - P (us)]

The statistic follows approximately the standard normal distribution. Large values of
g, would indicate answer copying. The probabilities of C selecting each alternative
of an item can be estimated by considering item difficulty and distractor difficulties
and the ratio of the copier’s raw score to the mean score of all test takers (see
Wollack, 1997).

The o index

The @ index proposed by Wollack (1997) is similar to the g, index discussed above.

However, while g, is based on CTT, e is based on IRT. Wollack (1997) suggested

that since CTT item statistics are dependent on the trait levels of the test-takers
included in the analysis, measures of the expected degree of similarity between a
pair of examinees depend largely on the performance of the other test-takers on the
test rather than only the two test-takers of interest. Under item response theory, the
probability of a test-taker answering a specific item correctly is determined by his or
her trait level and the characteristics of the item but independent of the other test-
takers who take the test. Wollack also suggested that the various IRT-based person-
fit statistics (such as those discussed before) used to identify aberrant response
patterns do not depend on the similarity between the suspected copier’s responses
and those of a neighbouring test-taker and were therefore found to detect answer
copying poorly. The @ index was developed specifically to detect answer copying
under the IRT framework.
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Wollack indicated that in investigating answer copying, the concern is not only with
whether a pair of test-takers jointly answers an item correctly or incorrectly but also
whether the same answer alternative was selected. This makes the IRT models for
dichotomous items inappropriate for answer copying analysis. He used the nominal
response model (NRM) developed by Bock (1972) to describe the interaction

between the test-taker and an item. Under NRM, the probability, P, (&,), of test-taker
i with ability 6 select option k of an MCQ item j is given by the following equation:
exp(gjk +/1jk9i)

m

Zexp(é/jj +1,6,)

ij (gi) = (41)

where:

m = number of alternatives
¢ = item intercept

Ay = item slope

For each pair of test-takers for which copying is possible, the number of identically
answered items (both correctly answered and incorrectly answered) can be counted

which is denoted as h.. Treating the responses from the source as fixed and given

the ability of the copier 6. and the properties of the items in the test, the conditional

probability that the copier selected the alternative k on item j which the source also
selected is P, (6;) represented in Equation (40). The sum of the probabilities over all

J items in the test will be the expected number of identical responses between the
copier and the source, which is the expectation of h:

E(hcs |HC'US'§) = ijk(‘gc)

where:

U = the response vector of the source
& = the item parameter vectors

The variance, which is a measure of the variability, of the observed number of
answer matches h.g will be:

var(heg) = Z P (G- P (6:)]
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The distribution of h.g will approach normality as the number of items becomes
sufficiently large. The o index is defined as:

J
hee = S'P(6.)
_ hCS B E(hCS |90’US’§) — s JZ; . c

 var(hg)

: (42)
JZ P (6:)[L- Py (6:)]

® becomes standard-normally distributed when the number of items is infinity.
Values of @ can therefore be used to evaluate for statistical significance. The large
the value of @, the more likely the similarity in responses between the two test-
takers resulted from answer copying.

The S, and S, indices

The S, index proposed by Sotaridona and Meijer (2003) is similar to the Kz index

conceptually (see Wollack, 2006). However, S; uses the Poisson distribution to

model the probability of match on an incorrect answer between the copier and the
source. It also uses a log-linear model to estimate the probability parameter in the

Poisson distribution for each group: log(x,) = £, + BW, , where W, is the number
incorrect score for test-takers in group r. Given the number incorrect answer of the
source Wq, if the number of matched or identical incorrect answers between the
copier ¢ and the source c is W, the probability of the matched incorrect answers

that are greater than or equal to W is the S, index for the pair:

Ws e/}"g
5= 4 (43)

I
g=Wcs g -

Small values of S, would suggest answer copying.

Sotaridona and Meijer (2003) extended the S, index to incorporate information on
matched or identical correct answers between the copier and the source into a new
copying index, the S, index. They argued that excluding the number of matched

correct answers in the analysis of copying assumes that the copier knows all the
correct answers to items both the copier and the source answered correctly, which
may not always be true. They suggested that a test-taker may get a correct answer

by copying or guessing. The K indices and the S, index are insensitive to copiers
who only copy the correct answers and S, overcomes this limitation. For the S,
index, the number of matched incorrect answers W, between the two test-takers is

35



Statistical techniques for studying anomaly in test results

used in the calculation. The formulae used to calculate the S, index is the same as
that used for calculating the S, index. However, both the matched incorrect answers
and the matched correct answers are used. The statistic used is m.s which is
calculated as the sum of the matched number incorrect answers w.g and the

matched number correct answers weighted by the likelihood of the match (see also
Wollack, 2006). For a test-taker j, in group r (with r number of incorrect answers),

Mg Is estimated from the following equation
o,
Meg = Wes + Zé‘ij, =Wes + Z(dl) € I(ui5=ui*)
i i

where i" denotes correct answers for item i, I, _, ., is an indicator function which

equals 1 if the source S answered item i correctly and O if incorrectly, and P, is the

percentage of test-takers in group r who match S on a correctly answered item i:

‘]I'

| |
Z (Uis =ux) * (U =Uis )
Pijr - J

i=1 r

where |, , is also an indicator function which equals 1 if test-taker j and the

source S answered identically to item i and 0 otherwise, and J, is the total number of
test-takers in group r. d, and d, are calculated from:

2R,
dl = (Ej I(u =U.)
k-1 57U

d, =—(k+1)

where k is the number of item categories. The S, index is defined as:

(44)

S, follows a Poison distribution for which the parameter x is estimated using the
same loglinear model as that used for S,. Small values of S, would suggest answer
copying.

The Variable Match-Indices (VMIs) & and &

Belov (2011) proposed two indices, the Variable Match indices, which can be used to
detect a variety of answer copying, including blind copying where two test-takers
provide the same responses to different items that are in the same positions and
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shift copying where the copier produce a response string to a set of items which is
the same as the response string from the source but the positions of the items are
different between the copier and the source (also see Bliss, 2012). These indices
can be used in situations where the test is composed of two parts, an operational
part which contains the same questions for all test takers and is used to generate
test scores, and a variable part which may contain different items for different test
takers. The test-takers will not know which part is operational and which part is
variable. It is the responses to the items in the variable section that are used to
investigate potential answer copying. A match happens when the potential copier
answers incorrectly to item i of the copier’s variable part and the potential source
selected the same answer to i+j of the source’s variable part.

For two test-takers c, the potential copier, and s, the potential source, taking a linear

test that is divided into two parts, the operational part (T) and the variable part (V),
define two random variables:

.. =n. . (W ,W = A
Un 3 (We, W, {O, otherewise

gj = gj (Wc’Ws) = Zni,j

ieV,
where:

w, = number of incorrect responses of c to the operational part T
W, = number of incorrect responses of s to the operational part T
V, = collection of items in the variable part of ¢

V, = collection of items in the variable part of s

The VM-index &, which is conditioned on w, and w,, is defined as:

&= 0w, L) = X8, w,) (45)

where the summation parameters | <u make the VM-index sensitive to different
types of coping:

When | =u=0, & is sensitive to a blind-copy event.

When | <u<0, £ is sensitive to a negative shift-copy event.
When 0<1<u, ¢ is sensitive to a positive shift-copy event.
When | <O<u, ¢ is sensitive to all of the above events.

1, c'sincorrectanswer toi eV and s'sameanswertoi+ jeV,

37



Statistical techniques for studying anomaly in test results

Belov used Monte Carlo method to estimate the critical values of the empirical
distribution of & for a given significance level ¢ .

Belov introduced an extension of the VM-Index, VM-Index* &, which is more

conservative than the VM-Index (see also Bliss, 2012). This index uses the following
two random variables:

1, c'sincorrectanswer to i €V, and s'same but correctanswer

n:jEn:j(Wc’Ws): toi+ eV,
0, otherewise

The index ¢ is defined as:

£ =& ww L wy =YY, (46)

j=liev,
Wesolowsky’s Z similarity index

Wesolowsky (2000a) proposed a copying index which represents a modified version
of the g, index proposed by Frary et al. (1977) and the @ index proposed by
Wollack (1997) discussed above. Calculation of this index involves:

e work out the number of identical answered items in the test between two test-takers

e estimate the probability of a test-taker answering an item correctly

e estimate the probability distribution of the number of identically answered items by
the two test-takers

The probability of test-taker i who answered item j correctly, fJij , Is estimated from

the following equation:

pij =[-(Q- r1)ai ]l/ai

The parameter a, is found by solving the following equation:

J
Z f’ij

=1 — Ci
J

where J is the number of questions in the test, and ¢, is the proportion of questions
answered correctly by test-taker i.
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Given the observed number of matched items between two test-takers i and k, M,

the expected value, /i, , can be estimated from the probabilities that the two test-
takers can answer each item in the test correctly or select specific wrong options:

1u|k zhlkj Z[ 1 plj)(l ka)thJ

where W, is the probability that, given the answer is wrong, wrong choice t is chosen
on item j, and v; is the number of wrong choices (distractors) of the item. The

variance of the distribution of matched number of answers is estimated from:

J
&ui = Zhikj a- hikj)
i=1
The Z index for the pair (i and k) is calculated from:

M., -1/2- 1
Zik — ik R lLlIk (47)
Ok

Z, follows the standard normal distribution, and large values would suggest answer

copying between the two test-takers. Compared with the g, and @ indices, this
index also aims to reduce Type | error.

The M, similarity index

The similarity index M, proposed by Maynes (2005, see also Wollack and Maynes,
2011; Maynes, 2014a) decomposes the number of matching answers between two
test-takers into two parts, with one related to the number of identical correct answers
and the other the number of identical incorrect answers. It uses a generalised
trinomial distribution to derive the exact distribution of the number of identical correct
and incorrect answers.

The probability for a test-taker to select a particular answer alternative for an item
depends on his/her ability and the item characteristics of the item and is modelled
using the Bock’ (1972) nominal response model. Under the assumption that two test-

takers, j with ability 9 and s with ability 9 , work independently of each other when

answering the item, the joint probability that j select & and s select ' on the same

T, (‘9;) T, 6,) of them

item i is given by the product of the probabilities and

selecting their answers independently:

”(rji =a,r;=a’ |‘9]’ 0,)= Tis ”jia(‘gj)ﬂ'sia, @,)
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The probabilities for the two test-takers jointly to select the correct answer P, , the

ijs ?

identical incorrect alternative Q,, and different alternatives R, are:

ijs ?

where 1, denotes the correct alternative (the key), 1(-) is an indicator function which

equals 1 if the statement in the parentheses is true and 0 otherwise, and A is the

number of alternatives. The probability f, ; (m,n) that the two test-takers have m

matching correct answers and n matching incorrect answers on t items in the test
can be found using a recursion approach:

= ft,js (m, n) = I:)tjs ft—l,js (m _17 n) + Qtjs ft—l,js (m’ n _1) + Rtjs ft—l,js (m’ n) (48)

4,js

f, (0,0 =1 f,,(00)=0

subject to the boundary conditions that when M=n=0 gng
otherwise. Because the assumption on which the calculation of the statistic is based
is that the two test-takers answered the two questions independently, small
probability of the matched correct and incorrect answers would represent unlikely

rare event. When Majs = ftvjs(m’n) is less than 0.05, one could conclude that the

probability of such a match by chance is small and therefore some kind of collusion
between the test-takers is indicated. To control Type | error, the researchers

M

suggested that "' 4 is corrected by a multiplication factor of (N=1)72 \yhere N is

the total number of test-takers. Pairs with M« <0.05 4re flagged.

3.2.2 Performance of copying and similarity indices

Wollack (1997) compared the performance of the @ and g, indices in detecting

answer copying under different simulation conditions in terms of type of copying,
percentage of items copied, proportion of test-takers engaged in copying and test
length. Three types of copying was considered: random copying, difficulty-weighted
copying and random string copying. His study found that @ was considerably better

at controlling Type | error than g, , with the Type | error rates for @ generally below

the specified nominal Type | error rates while that for g, substantially inflated (above
the nominal values) under the simulation conditions. It was found that the power of
 increases with test length and percentage of items copied and is insensitive to the
type of copying. For a test of 80 items, the study found that the detection rate of @
was about 58% at a = 0.05 when the proportion of items copied was 20%.
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Wollack (2006) also used simulations involving manipulating responses from a real
test to investigate the Type | error rate and detection power of eight copying indices.

These included B, H, », S,, S, and K, , and pairs of these indices. The types of

copying considered in this study included random copying, string copying and mixed
copying. Results from this study indicated that for the majority of these indices and
their pairs, the Type | error rates were smaller than or similar to the nominal « levels
(0.0005, 0.001, 0.005 and 0.01 respectively). The detection power of the indices
varied substantially from 0% to over 90%, depending on the Type | error rates,
percentages of items copied, test length and type of copying. It was found that for
most of the simulation conditions and copying types, @ and the w—H" (H  isa
revised H index with critical values derived empirically) paired index out-performed
the other indices, with @ being particularly powerful in detecting random copying and
o —H" in detecting strings copying. Studies carried out by Zopluoglu (2016a)
indicated that w, the K-indices, S, and S, performed similarly for the datasets he

analysed.

Belov (2011) compared the performance of three statistics, the K-index (K) and the
Variable Match-Indices (& and ¢) in detecting blind copying and shift copying. His

study indicated that, when slightly over 20% of the test-takers were involved in
copying, the Type | error rates for these indices were generally below the nominal «

values. When the proportion of test-takers involved in copying was small, & and &
had better control of the Type | error rates. The detection rates of these indices
varied, depending on the proportion of items copied. & and ¢ generally had higher
detection rates than K at all & values. In the case of blind or random copying, the
detection rate was slightly below 70% for K, over 90% for ¢ and slightly over 80% for

& at a =0.05 when the proportion of items copied was 30%.

Simulation studies carried out by Wesolowsky (2000a) and Maynes (2014) indicated
the two similarity indices Z, and M, generally had a Type | error below the nominal
a level.

3.2.3 Practical applications and computer software

Many of the answer copying indices are sensitive to a range of factors involved in
copying such as the nature of copying, the proportions of items being copied, test
length, the proportions of test takers involved in copying. For practical applications,
Wollack (2006) suggested that a straightforward approach is needed to select the
index as the type and extent of copying is normally not known. An approach that
possesses a good power and small Type | error rates for a range of possible copying
conditions would be preferred.
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Wollack (2006) suggested that many of the existing available indexes lack sufficient
power at small « levels or when the amount of copying is relatively small. His work
explored the utility of using multiple copying indexes in tandem to detect different
types and amounts of answer copying. The results of his study suggest that using
the » and the revised H index ( H ") indices together may help improve power in
these two areas without compromising the power in other conditions where power is
already adequate. He concluded that o is the index of choice to detect random
copying and suggested that w— H" is generally most powerful to detect strings
copying. If the items copied were small, H™ was powerful in detecting copying. He
suggested that @ and »— H"would be good options for most applications. He also
indicated that although H ™ may be the best index in certain situations such as those
involving, to a certain extent, strings copying, it however appears to be a poor choice
when copying is dominated by random copying.

Zopluoglu (2016b) has developed an R packages that can be used to estimate a
range of copying indices from test response data for tests composed of multiple
choice questions. These include:

e the w index
e K index and its variants

e the S, and S, indices
¢ the generalised binominal test

Wesolowsky (2000b) also developed the computer software SCheck to calculate the
similarity index Z,, he proposed.

3.3 Analysis based on comparison of performances on two subsets
of items in the test

In situations where a test is constructed into sections and a particular section (or
sections) may be prone to malpractice, the relationship between scores on different
sections may be used to identify potential aberrant test-takers. This is different from
person-fit statistics or copying indices discussed previously where the responses to
individual items are examined for inconsistency. These indices may be used to
detect aberrant responses associated with a range of behaviours such as answer
copying, answer changes, item pre-knowledge, and inappropriate scoring.

Differential person functioning analysis

Smith and Davis-Becker (2011) proposed the use of differential person functioning
(DPF) analysis for detecting cheating associated with prior knowledge of a proportion
of the items in a test. DPF occurs when there are interactions between individual
test-takers and classification of items in the test. DPF analysis is a way of examining
the response behaviours of test-takers. The existence of DIF is a violation of
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measurement invariance which constitutes an important aspect of validity. The
fundamental assumption that DPF analysis can be used to identify cheating person
is that a person’s ability measure estimated using one set of items in the test should
be similar to that estimated using the other set of items. If the ability estimate from
the set of items prone to cheating is higher than that from the other set of item
significantly, then the person has potentially behaved inappropriately. Smith and
Davis-Becker conducted DPF analysis using the Rasch model, which involves:

e the items in the test is partitioned into two sets, with one set assumed to be prone
to prior knowledge or other inappropriate behaviour and the other set not.

e conduct DPF analysis. There are different ways to do DPF analysis. One way is to
analyse all person and item together to estimate item and person parameters. Once
the item parameters are estimated, fix their values and re-estimate the ability of
individual person on the two set of items. If the difference between the two ability
estimates is large (greater than 0.6 logits) and is significant, then the person is
flagged out as potentially inappropriately behaved.

Smith and Davis-Becker also investigated the sensitivity and stability of using this
approach to detect potential cheaters with regard to the number of items not prone to
inappropriate behaviour and the probabilities used to flag individuals. They found
that with eight security items, a DPF contrast greater than 3, and flagging
probabilities less than .005, the approach would result in 91% decision consistency,
1.1% Type | error rate, and a 7.9% Type |l error rate.

The Kullback-Leibler Divergence (KLD ) index

Belov et al. (2007) and Belov and Armstrong (2010) proposed to use the Kullback-
Leibler Divergence (KLD ) index to identify individual aberrant test-takers. Assuming
that a test can be divided into two non-overlapping parts (R and S) or two sets of
items. For a test-taker e, his/her posterior distributions of ability can be estimated

separately based on responses to the two sets of items. These are denoted as R(6,)

and S(6,) respectively. The KLD between the two distributions of ability is
computed from the following equation:

KLD = jR(e )log EEQ ; do, (49)

The distributions of ability is estimated using an IRT model. Relatively large values
for KLD indicate significant difference in the test-taker’s performance between the
two parts. Belov and Armstrong (2010) described the following procedure for
calculating KLD numerically:

o for each individual test-taker, construct his/her response vectors on the two parts:
r(r,r,...r.) and S(S;,S;,.., S,) where m and n are the total number of items in the
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two parts respectively. The elements of the response vectors are either 1 or 0
(dichotomous items)

e to facilitate numerical approximation, the ability range is set to [-4,4] which is divided
into h-1 intervals with h ability values {é,,4,,..., 6.} (h was set to 27 in their study)

e Bayesian posteriors for the two parts are computed based on the response vectors.
The probabilities for the two parts can be approximated using the following
equations:

rm[P(rj 16)

ZHP(F 16)

ﬁP(sj 1)

S(e)_ h n !

ZHP(S,- 16)

k=1

1=12,..,h

R(9,) =

I=12,..,h

where P(r;|6,) and P(s; | 6,) are the probabilities corresponding to the

responses given the ability level 6§, calculated using the IRT model employed

¢ the Kullback-Leibler divergence index is calculated from the following equation:

KLD = 211 R(6,)log EEZ;

(50)

The value of KLD provides a measure of similarity between the two ability
distributions. Large divergence values indicate a significant change in performance
between R and S. KLD can also be used as a person-fit statistic. To be able to use
KLD to flag aberrant respondent, a critical value corresponding to a desired level of
significance « is needed. Such a critical value can be derived by producing the
distribution of KLD using all test-takers. KLD will have high power to detect low-
ability aberrant respondents.

Belov and Armstrong (2010) used KLD in combination with the answer copying K-
index to detect answer copying. They found that KLD had better control of Type |
error than the K-index. Belov (2014, 2015) also used KLD to identify aberrant
behaviour associated with answer changes.

The Matched Percentile Index (MPI) and the Irregularity Index (IRI)

Based on the concept from equipercentile concordance used in test equating (Kolen
and Brennan, 2008), Li et al. (2014) proposed the use of the matched percentile
index (MPI) based on comparing the performances on parts of the test to identify
test-takers with aberrant responses. In their study of a test composed of both MCQ
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guestions and construct response (CR) questions, the scores on the MCQ questions
and those on the CR questions are equated to derive the MPI, which involved the
following steps (see Li et al., 2014):

1. Convert observed MC scores to CR scores by identifying scores observed on
the MC section that have the same percentile ranks as scores observed on the
CR section. Compute the standard error of measurement (SEM) and obtain the
error bands for the converted CR scores for a desired « level (for example, +3
SEM may be desired). Test-takers with converted score outside the error bands
can be identified.

2. Similarly, convert the observed CR scores to MC scores by identifying scores
observed on the CR section that have the same percentile ranks as scores
observed on the MC section. The SEM is then computed to obtain the error
bands for the converted MC scores for a desired « level. Test-takers with
converted score outside the error bands can be identified.

3. Test-takers who are identified as outliers by both 1 and 2 above are flagged
and assigned a value of True to the MPI. These test-takers are suspicious of
test misconduct at the desired « level.

Li et al. also proposed to use the score on one part of the test (eg the MCQ section)
to predict the score on the other part (eg the CR section). The predicted score then
is compared with the observed score to derive the Irregularity Index (IRI). If the
probability of the difference between the observed score and the predicted score is
larger than chance, then the test-taker is flagged as an aberrant respondent. The
following steps are needed to estimate IRI (see Li et al., 2014):

1. Based on the observed MCQ score of a test-taker, estimate his/her ability 6,

Calculate the expected CR score and the standard error of estimation (SEE) for
the test-taker using the ability estimate 6, from the MCQ scores and an IRT

model for polytomous items.

2. IRI for the test-taker is calculated as the difference between the observed and
expected CR scores divided by the estimated standard error of estimation.

3. For a desired « level, test-takers with IRI values above (or below) the critical
value are flagged as aberrant respondents.

Simulation studies suggested that the false positive rates were less than 2.5% for the
two indices and the detection power varied from negligible to over 60%, depending
on simulation conditions.

The simple linear regression approach

Li et al. (2014) also used the simple linear regression method to look at the
relationship between the difference scores between the MCQ section and CR
section in the test, Y , and the ability estimates based on scores on the MCQ section

6, to identify potential aberrant respondents:
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Y, =a+bl,; +e& (51)

where i denotes the ith student, a and b are the model parameters, and ¢; is the

residual. Test-takers with the observed difference score between the MCQ section
and the CR section outside the 95% interval (or any other specified « level) of the
predicted value are identified as potential aberrant respondents. If the residuals are
standardised, test takers with the standardised residuals which are above (or below)
2 standard deviations (or any other desired values) are flagged.

Results from simulation studies showed that the power of these methods in
identifying person with manipulated responses varied from nearly 7% to slightly over
35%, depending again on the type of manipulation simulated.

The Z-test statistic for difference scores

The difference between two sets of scores or ability estimates under the IRT
framework from two sets of items in the test has also been used to identify aberrant
respondents using a Z - test (see Guo and Drasgow, 2010; Li et al., 2014; Maynes,
2014b). If the two test scores or ability estimates are assumed to be measures of the
proficiency of the test-taker, a significant difference between the two estimates or
scores at the specified « level would suggest inconsistent performance on the two
sets of items. If it is assumed that the ability estimate for a test-taker based on the

first set of items is 6, with a standard error of estimation of Se, and that estimated

based on the second set of items is §, with a standard error of estimation of S€,, the
Z - test statistic can be calculated as:

él_éz

A€} +se’

If the Z -statistic can be assumed to be normally distributed, for a desired « level,
the corresponding critical value can be used for identifying aberrant test-takers.
Results from simulation studies by Guo and Drasgow suggested that the Type | error
rate was close to the nominal « value of 0.01 used, and the detection power varied
from negligible to over 95%, depending on the difference in abilities estimated based
on the two sets of items.

7 — (52)

Use of the conditional probability distribution of score difference

Maynes (2014b) proposed an IRT approach to evaluate the differences of scores on
two sets of items in a test to detect aberrant respondents, which overcomes the
issue with estimating the standard error of score differences and the normality of Z
score. The idea of this approach is that, for a test-taker, given his/her ability
estimated using an IRT model, the conditional probability of the difference between
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the two sum scores on the two sets of items can be computed. For the observed
sum scores, if this probability is less than the critical value for a desired « level, the
performances on the two sets of items are significantly different and the test-taker is
flagged. The procedure involves the following steps:

e given the ability estimate & of the test taker, the probability of score w on k+1
items T,.,(w| &) is calculated using a recurrence relation:

Tk+1(W|6):Zpk+l(5|0)Tk(W_S)’ To(o):]- and To(W):O vw =0

where p,.,(S|0) is the probability of scoring s on item k+1

¢ the joint probability of scoring x on the first set of items and y on the second set
of items can be calculated from:
f(x,y10) =T, (x| O)T,(y|6)

e given the observed score S = x+ y on the overall test, the conditional probability
distribution of the difference score d = x —y can be calculated from:

S+d
_T(XIOT,(S—x]0) _ T( |9)T ( | 6)
f(d|6,S)= (510 f(S|¢9) (53)

Where the denominator is defined as:

£(516)= ZT( Liom, 28

16)

o for a given value of @, total score S, score difference d and the desired « level
level, if the conditional probability f(d|@,S) is less than the critical value, the test-

taker is flagged as aberrant.

Maynes applied this method to identify aberrant respondents associated with
guessing, collusion or answer copying and performance on anchor items and unique
items.

3.4 IRT models embedding aberrant behaviours

Item response theory models have also been proposed to model aberrant
responses. The two models discussed here take into consideration item pre-
knowledge and answer changing.

The Deterministic, Gated Item Response Theory Model (DGM) for item pre-
knowledge

Shu et al (2013) proposed a model, the Deterministic, Gated Item Response Theory
Model (DGM), that can be used to detect cheating resulting from item over-exposure.
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This model classifies test-takers into two groups, cheaters and non-cheaters, by
conditioning on two mutually exclusive types of items, the exposed items
(compromised items) and the secure items (or unexposed items). Exposed items can
be identified based on empirical exposure rates. The secure items are newly
released. Shu et al. suggested that exposure of items acts like a gate through which
cheating becomes possible through item pre-knowledge, while the secure items are
not prone to cheating. The DGM identifies potential cheaters by computing their
score gain in the exposed items from their scores on the secure items.

In the DGM, the observed item performance by a test-taker is decomposed into
either their true proficiency function or a response function due to cheating ability.
The model can be applied to tests composed of dichotomous items and can be
expressed as:

PU,; =1]6;,6,,b.T,1,)

LT T (54)
= P(Uij :1|‘9tj) J[(l_li)P(Uij :1|9tj)+ IiP(Uij :1|0cj)]J

where:

PU; =1]6,,0,,b,T,,1,) is the probability of scoring U;; on item i by test
taker j with a true ability of §; and cheating ability of 6,

b, = difficulty of item i

_{1, when 6, < 0,

" 10, when 6, >0,

When T, =1, j is identified as a cheater.

, an indicator variable used to flag cheaters

1, exposeditem , . .
I, = , model input defining the status of the item

0, secureitem
PU; =1]6;) =exp(&; —b) /[L+exp(g; —b)], the Rasch model

PU; =1|6;) =exp(6; —b)/[L+exp(6,; —b)], the Rasch model

When T, =0, the test-takers’ responses to all items in the test are based on their
true ability 6,. When T, =1, the test-takers’ response to unexposed items will be
based on their true ability 6, but their responses to exposed items will be based on

their cheating ability €, . Shu et al. used Markov Chain Monte Carlo (MCMC) method

to estimate model parameters of the DGM. They indicated that the difference
between the true value of §; and the true value of §;should be zero when test-taker

j is not a cheater. If the difference between the true values of 6; and ¢, is greater

than O then, the test-taker is a cheater:
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=0, fornon -cheaters
9 "9)50, forcheaters

The estimated values and the associated errors can be tested for significance in
difference between the two variables. Test-takers can also be classified as cheaters

or non-cheaters by setting a cut point P,(0< P, <1) for the average 'fj of the

posterior samples of the indicator variable T;:

1, T, 2P, forcheaters
T, <P, fornon - cheaters
A higher cut point would indicate a higher confidence that the estimate of the
cheating ability is greater than the estimate of the true ability.

Results from simulation studies suggested that, the specificity of the model, the
percentage of non-cheaters correctly identified, was about 96% for all simulation

conditions considered and out-performed the |, index when the proportion of

cheaters in the sample was 70%. The detection power of the model, or sensitivity,
was found to be influenced by factors such as proportion of items exposed, the
effectiveness of cheating and proportion of cheaters. The DGM model had more
power in detecting effective cheaters showing a high level of score gain (ie, a high
level of pre-knowledge) than less effective cheaters. With a proportion of cheaters at
5%, the model was able to detect about 80 % of high-effective cheaters. The
detection rate was only 48% of high-effective cheaters when the proportion of
cheaters was 70%. It was found that the DGM model had higher detection power

than |, index under all simulation conditions.

Modelling answer changes

Linden and Jeon (2012) attempted to model the probabilities of changes made to
answers of items. Although their model can be applied to both paper and pencile
based tests and computed based tests, their study focused on erasures made to
answer sheets. A statistic based on wrong to right (WTR) changes (erasure) was
proposed to identify unusual changes or aberrant respondents. It was assumed that
test-takers have enough time to answer all items and review their answers. Two
different stages of the response process were proposed: the first stage is to produce
the initial responses to the items; the second (final) stage is to review the answers
and make changes to the initial answers. Changes can be grouped into three
categories:

¢ the initial correct response from the first stage was replaced by an incorrect
answer in the second stage (right to wrong — RTW change)
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¢ the initial wrong answer was replaced by another wrong answer (wrong to wrong —
WTW change)

¢ the initial wrong answer was replaced by a correct answer (wrong to right - WTR
change). The statistic E below is the total number of WTR changes in the test

The following steps are involved to derive the critical value of the statistic:

e based on the responses from the first stage using the 3PL model (for MCQ test),
the abilities of the test takers are estimated

e for the second stage, the abilities of the test takers are fixed as the values estimated
from the first stage. For a WTR change in the second stage, the probability is
modelled using a 2PL model as follows:

_ 2 _ L explag (6, —by)]
I:)ni _Pr{Uni _1|Uni _0}_1+exp[a0i(0:_b0i)] (55)

where:

n = the nth test-taker
i = the ith item in the test

g = the ability of test taker n estimated using responses from the first
stage

U2 andU} = the second and first responses from test taker n on item i
(1 for a correct and O for an incorrect response)

a,; and by, = item parameters of item i

The item parameters {@,; } and {b,; } can be estimated using a subset of the
final response data constructed by selecting responses being incorrect (ie
U~ =0) at the first stage. A logistic regression approach was used to
estimate the item parameters.

e given the number of WTR changes E, for test-taker n with known ability on J,

changed items with known item parameters, the probability distribution of possible
number of WTR changes E on the J, items are calculated by the generating

function with the recursive method proposed by Lord and Wingersky (1984):

Pr{E=¢}, e=01..E, (56)

For a given level of significance «, identify e as the critical value for which the
probability Pr{E =€} is less than « from the list of abilities listed from the above

equation. The test-taker will be identified as an aberrant respondent if the total
number of E, is large or equal to the critical value: E, =€, .
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When this model was applied to the responses of 2555 Grade 3 students to 65
mathematics items, 2.6% of the students were found to have aberrant answer
changes at & = 0.05 level.

4. Analysis of aberrant response patterns and
unusual test scores for groups

While research studying aberrant responses at individual test-taker level started in
the early 1920s, research investigating aberrant responses or anomalous scores at
class or school levels only received increased attention over the last two decades.
This partly reflects increasing report in the media of test collusion involving large
number of individuals at different levels of the system (see Thiessen, 2008; Wollack
and Maynes, 2011; Plackner and Primoli, 2014). A wide range of statistical
techniques have been developed and used to identify groups (test centres, classes
and schools) with anomalous test results. These generally involve the following
analyses at group level:

e wrong-to-right (WTR) erasure rates

e test score and response patterns

e growth rates over time

e test score distributions

¢ relationships in performance between parts of the test

¢ relationships between test performance and other variables

4.1 Analysis based on wrong to right (WTR) answer changes

Analysis of wrong-to-right erasures has been used by testing companies or other
authorities to identify class or school level cheating (see Wibowo et al., 2013;
McClintock, 2015). Wibowo et al. (2013) described the conventional approach used
to conduct erasure analysis: For a unit or group (class or school) u, the WTR erasure

rate M, is defined as the average number of erasures within the unit:

=

'\Wu:i u Muk
N l '

u

=
I

Where:

M, . =the number of erasures of student k in unit u

N, = the number of students in unit u

Given the mean erasure rate ¢ and standard deviation o for the population, the
sampling distribution of samples with a size of N, will be normally distributed with a
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mean of x and standard deviation of &/,/N, . For the sample from a specific unit u,

if the observed mean erasure rate is significantly higher than the population mean for
a pre-specified level of significance, it is flagged as an outlier and may be subject to
further investigation for potential test collusion. The significance level is specified as
the number of standard deviation 4 that the unit mean departs from the population
mean:

M, >,u+AL

N,

A takes integers such as 3, 4 or 5. The conventional method is not appropriate for
units with small size (eg <100) due to inflated Type | error rates.

Wibowo et al (2013) used a Poisson-gamma distribution to model the distribution P
of the number of WTR erasures within a unit to flag units with unusual number of
erasures:

P, =mir.p)=" S @ pyp”

where:

m=01,...
r,p = model parameters to be estimated and 0< p<1

For a unit with the total number of WTR erasures S, = Z:‘:le , the distribution of S,

will also follow a Poisson-gamma distribution with parameters rN, and p:

I"(rN, +5,) N, s
P(S. =s |r,p,N )=—u"2ul(q_ )N ps
(S, =s,Ir,p,N,) SIT(N,) L-p)™p (57)

where s, =0,1... is the value of the random variable S,. For a specific unit u with a

total number of WTR erasures S, if the probability is less than the specified
significant level «, then the unit is flag as having unusual number of WTR erasures:

P(S,2s,[F,p,N,) <« (58)
Results from simulation studies suggested this method had better control of the Type

| error rates than the traditional method. The Type | error rates were generally
smaller or close to the nominal « values under the simulation conditions.
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4.2 Analysis based on response patterns and test scores
4.2.1 Analysis based on similarity indices

Use of similarity indices in conjunction with nearest neighbour clustering
approach

Wollack and Maynes (2011, 2017) present an approach which could be used to
detect clusters of test-takers engaged in test collusion. The approach is based on
analysis of the similarity of answers between test takers and does not require that
the groups of potentially contaminated examinees be identified a priori and can be
applied to data from a single test administration. The method can be used to identify
individuals whose test scores are of questionable validity.

The method uses the nearest neighbour (or single linkage) clustering in conjunction
with an answer similarity index used to characterise the degree of similarity in the
answers between two test takers. The approach involves the following steps:

e computation of the answer similarity index and set the threshold for flagging pairs
of test takers with unusual similarities in their answers. The answer similarity
statistic used by Wollack and Maynes is the M, index proposed by Maynes
(2005)

e once values of the similarity between all possible pairs of test takers have been
calculated, aberrant respondents can be identified using the threshold. These
respondents are then grouped into clusters using the nearest neighbour clustering
method with their paired similarity data. In this clustering approach, all linked test-
takers are grouped into one cluster. That is, two clusters S and T, which contain

two sets of test-takers N.(s=12...,n,) and N,(t=12..,n) respectively, are
clustered together if the similarity index S(s;,t;) for pair [s;,t;]exceeds the pre-

defined threshold for at least one [s;,t;] pair between the two clusters

The researchers also used a statistical model to simulate the impact of collusion on
the probability of selecting identical alternatives between two test-takers using
simulated item response data. Their results indicated that it is possible to recover
clusters of inter-related test-takers, provided the amount and magnitude of collusion
is reasonably high. Cluster integrity, which is a measure of the extent to which the
grouped clusters are interpretable, improves as the cluster effect and the number of
exposed items increases. The Type | error rates were found generally to be below
the nominal significance level at & = 0.05 used in their study. The detection power
was influenced primarily by the number of items compromised and the collusion
strength.
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Use of group average of similarity measures

The similarity indices such as the Z and M, used for flagging individuals with

unusual response patterns discussed before can also be used to flag groups with
unusual number of aberrant respondents. Sotaridona et al. (2014) presented a

standardised non-parametric matching index Z_. for flagging pairs of individuals
taking an MCQ test composed of J items:

M nn’ z Pnn',i

Z . = N (59)

\/i I:)nn’,i (1_ I:)nn',i)
i=1

where:
n,n'(n=n") is test taker pair (n,n’)

P

nn',i

:Zk‘ P_.P . isthe expected probability that (n,n") will match on their

k=1 0k in'k
response to item i, k is response category, P, and P, . are the
response probabilities, and k; is the number of response categories
M,,, is the number of matched items
Z_. is asymptotically normally distributed and can be used to flag pairs with unusual

nn

matched number of items for a specified level of significance « . For class u with a
total number of test-takers N, and a test-taker n in u, the average of her/his Z,,
across the test takers in the unit can be calculated as:

Nu
D> Zoy

__n'=l,n"#n

"N, -1

For this distribution of the average values, the mean x4, and deviation o, can be
calculated. The population mean u of the above statistic and its standard deviation
o can be calculated. For a specific class with N, test-takers, if the group mean g,
is significantly greater than the population mean x for a given level of significance
a , the class is flagged as performed abnormally on the test:

Hy—H
T, =-rv 60
o,/\yN, (60)
T, is assumed to be asymptotically normally distributed and can be used to flag

suspicious classes. Sotaridona et al. (2014) subsequently improved the method by
producing a parametric statistic using Bock’s nominal response model to estimate
matching probabilities between pairs of individuals. Real test data were manipulated
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to test the power and the Type | error rate of the index. It was found that the Type |
error rates were generally below or close to the nominal levels. For a given level of
a , the detection rate varied with the proportion of items copied. At @ =0.02, the
detection rate was almost 100% when the proportion of items copied was over 40%.
The parametric approach also out-performed the non-parametric approach.

4.2.2 Analysis based on person-fit statistics
Use of factor analysis for grouping aberrant respondents

Zhang et al. (2011) used Q-type factor analysis to cluster aberrant respondents
identified using person-fit statistics further into different groups. Each group contains
respondents with similar aberrant responses. Different groups may show aberrant
responses on different set of items. Their approach involves the following main
steps:

¢ select person-fit indices from the existing research literature. In their study, they
used the unweighted U statistic for the Rasch model

e establish thresholds with simulated data for the chosen person-fit statistics and
use them to identify test-takers with aberrant item responses

e assign aberrance scores to items for each test-taker flagged by person-fit indices
to construct aberrant response vector. In their study, the aberrance response
vector is constructed using the following procedure:

1. The original response data from all test-takers is analysed using the Rasch
model for dichotomous items, and the unweighted person fit statistic U is
calculated for each person:

i njl)2 13
o =FZV"1 (61)
V,,; is the variance of the score of person n on item j.

2. Set the threshold for U, to identify persons with under-fit to the Rasch model

(ie persons with variability in their item scores larger than the Rasch model
predicted).
3. For each item j in the test, the aberrant response score by person n is

determined using the threshold U,:

C[1ifV, >,
" 10 otherwise

The aberrance response vector is Y, ={Y}.

e Create the matrix of inner product of aberrant response vectors for the identified
aberrant respondents. The researchers indicated that clustering can be based on
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the Euclidean distance or dot product between two response vectors. However,
they argued that while Euclidean distance is more likely to measure the
dissimilarity between two aberrance response vectors, the dot product measures
the similarity between the vectors:

e (V2. Y2) = (Y, = Y)Y = Yo)T = /(Va; — ¥2,)? (62)
dOt(Y11Y2):Y1'Y2 :th'yzj' (63)
j

They chose the dot product approach over the Euclidean distance as the purpose
was to identify test-takers whose test responses are aberrant and answered in the
similar ways. The dot product is however insensitive in distinguishing pairs of test-
takers when they answered the same set of items correctly but had various
patterns of inconsistent responses to other items. To overcome this issue, the
aberrance scores on each item are standardised before producing the dot product
matrix. The standardised aberrance response vectors can be expressed as a
matrix, and the matrix of inner product can be generated as the correlation matrix
between aberrant respondents which is different from conventional correlation
matrix where correlations between variables are used.

¢ Analyse the matrix with factor analysis, the Q-type factor analysis, with rotation
such as the Varmax rotation technique, and use factor loadings on individual
factors to group test-takers with similar aberrant responses.

This approach intends to cluster aberrant respondents into groups which may
possess shared pre-knowledge of test content. The detection power was affected by
the number of compromised items and the number of test-takers with pre-
knowledge. When 5% of the items (a total of 200) were compromised, the average
detection rate was around 38%, higher than that identified using |, or the Caution
Index C. The detection rate was close to 100% when 20% of the 200 items used
were compromised.

Detection of test collusion using Kullback-Leibler Divergence

Belov (2013, 2014, 2016) proposed the use of the Kullback-Leibler divergence index
to investigate aberrant test performance, particularly test collusion which involves
large scale sharing of test materials (including answers to test items) at test centre
level. Here, the definition of test centre is not limited by the geographic location. His
approach works in two stages:

e stage 1: test centres with an unusual distribution of a person-fit statistic are
identified using a statistic related to Kullback—Leibler divergence. For a centre ¢

belonging to the collection of all centres C, (¢ €C,), this statistic g, is defined as:

9. = ) [D(H [ H,)+ D(H, | H))] (64)

xeC
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where:

H, and H, =the empirical distribution of the person-fit statistic used for
centres c and centre x

D(H, || H,) is the Kullback-Leibler divergence defined for a finite set of K
values {d,,d,,...,d, } used to represent the distribution of H_

and H, which can be calculated from the following equation:

H.(d,)

D(H. IH,) = ZH(Ol)I H.(d,)

(65)

g, is a measure of dissimilarity between the distribution of the person-fit statistic
for test centre ¢ and the distributions for the other centres. The definition of the
statistic g, balances the asymmetry of the Kullback-Leibler divergence.
D(H, [ H,)=0.

e stage : test-takers from identified test centres are analysed further using the

person-fit statistic, where the critical value of the fit statistic used to detect
aberrant respondents is computed using data from non-aberrant centres only

Computer simulation studies were conducted to investigate the power of this
approach for different conditions under which items are compromised and Type |
error rates. The Type | error rates were below the nominal levels. The detection rates
were over 90% at « =0.05 for the conditions simulated. The approach was found to
be effective in computer adaptive testing for detecting groups of test-takers with item
pre-knowledge (accessed one or more subsets of items prior to the exam). Belov
suggested that this approach is extremely flexible as any existing person-fit statistic
used to detect aberrant test-takers can be used. Further, this approach can be
applied to many forms of testing, including paper-and-pencil testing, computer-based
testing, multi-stage testing (MST), and computer adaptive testing.

Use of group proportion of persons identified as aberrant respondents by fit
statistics

Although the various person-fit statistics discussed previously which are used to
identify individual test-takers with aberrant responses, given the specified level of
significance «, the proportion of persons identified as aberrant respondents in a group
(eg a class or a school) can be calculated. This group proportion may then be
compared with the proportion of aberrant respondents observed for the population. If
the group proportion of aberrant respondents is statistically significantly higher than
the population value, the group may be assumed to have performed abnormally in
relation to other groups.
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4.2.3 Analysis based on item responses and test score distributions within
individual groups

Factor and cluster analysis based on item responses and test score
distributions

When investigating score anomaly at class level associated with score manipulation
in the Italian standardised national tests for primary and secondary schools,
Quintano et al. (2009) used a fuzzy k-means clustering approach which is based on
four class-level indicators of test scores to identify outlier classes and correct class
scores. These assessments contain both closed-form and open-ended items. The
four indicators used by the researchers are:

¢ Class mean score on the test P,

e Standard deviation of scores of the class o
e Class non-response rate R, which is defined as:

R, =L (66)

where:
N, is the number of number of students in the class

J is the number of number of items in the test taken by the class
J__. is the number of items not responded by student i

nr,i

e Homogeneity index of answers H, which is defined as:

1 b ?
H, =32{1;(N—j J (67)

S

where:

h. is the number of alternative answers to item i
n. . is the number of students in the class that gave the jth answer to item i

|
Further analysis of the dimensionality of the indicators was undertaken using
exploratory factor analysis with principal component (PC) extraction in order to select
a set of underlying factors for clustering analysis. For their study, the researchers
found that the first two components accounted for over 90% of the total variance.
The first component was highly correlated with all the four indicators, while the
second component was highly correlated with class non-response rate indicator. The
correlation between the first factor and the class mean score was highly negative,
while the correlations with both the standard deviation and answer homogeneity
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were highly positive. The second component was highly correlated with class non-
response rate. The researchers suggested that the first component could be
interpreted as the “outliers identification axis” and the second component the “index
of class collaboration to survey”.

The classes were then classified into 8 groups using a fuzzy version of the non-
overlapping k-means clustering with a value of 2 for the fuzzy parameter r (see

Bezdek, 1981) based on the two principal components identified. This involves

minimizing the following objective function using the repetition method:

=z

CSC

Jexm = Predr (68)
-1

S

>
1
[aN

where:

N, = total number of classes

S, = total number of clusters (8)

I = fuzziness parameter (=2. r=0 represents normal non-overlapping
clustering)

d.. = the distance between class n and the centroid of cluster s

P, €[01] = the cluster membership degree of class n belonging to cluster s

andz P.=1. P is calculated from:

= NS

1
=7
Z(dns /dnt)y(ril)
t=1

The centroids of the clusters are then projected onto the two factor components to
identify the outlying cluster. The researchers then used the class membership
degree for the outlying cluster as a manipulation indicator to correct the class mean
score. Based on comparison of performances between classes with external
monitors and those without, Battistin et al. (2014, also see Angrist et al., 2014)
further improved the estimation of the manipulation index.

Comparison of item responses and test score distributions between groups
taking the same test under different conditions — a likelihood approach

In the Italian standardised national tests discussed above, the majority of the
students take the tests in their own classrooms, invigilated by teachers from their
own schools. However, these teachers are not currently teaching the classes they
are invigilating. The teachers are also responsible for marking students’ work where
needed, transcribing the answers and sending the results back to the National
Institute for the Evaluation of the Education System (INVALSI) for analysis. A
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proportion of the classes (about 10%) is also randomly selected and invigilated by
external monitors. These external monitors perform the same tasks as the school
teachers but have no prior connection to the schools they are assigned to.
Fernandez (2016) uses this as a large-scale natural experiment in which classes
invigilated by external monitors were treated as the treatment group while those by
teachers as the control group and adopts a likelihood approach to detect potential
test score manipulation in classes where school teachers were invigilators. This
approach is based on the comparison of score distributions between the treatment
and control groups after controlling for the effects of other factors which could also
affect students’ test scores. Classes with unlikely outcomes are identified through
low values for the likelihood function of their score distribution. The likelihood values
are also used to adjust class mean scores. The approach can overcome some of the
limitations associated with the fuzzy k-means clustering approach used by Quintano
et al. (2009) discussed above.

Steps involved in implementing this approach include:

e Model aresponse y,; of student i in class c to item j in the test using latent

variables:

Yij :1(Yi*cj >0)
y;::j =1 + & + Eig

where 7,.,&; and g;; are the latent variables representing the individual-class

effect, question effect and the individual-class-question iid shock respectively. The
individual-class effect are treated as random and question effect as fixed

¢ after the individual-class effects are accounted for, the answers of two students
are independent. This make it possible to construct a likelihood function of score
distribution of the classes. The likelihood function is modelled separately for the
treatment group and the control group

|, can be estimated for its score distribution

e for each class, a likelihood, I_,
Comparison of the probability density function of the likelihood between the
treatment group and the control group can be used to detect score manipulation in
classes in the control group. That is classes with unlikely results (or with small
probabilities)

e the cumulative distribution functions (cdf) of the likelihood of the classes are
constructed for the treatment group and the control group separately, which are

denoted as F () and F_.,(I) respectively

¢ the cumulative distribution functions are used to adjust the likelihood of the
classes in the control group:

T _ FL,co(rc) I‘

Ry (©9)

C
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This will result in the adjusted cdf of the likelihood for the classes in the control
group to be the same as that for the classes in the treatment group

¢ the adjusted and unadjusted likelihood values are used to adjust the class scores
for classes in the control group

4.2.4 Analysis based on relationships between scores on subsets of items
within the test

The simple linear regression approach

Li et al. (2014) used the simple linear regression method to look at the relationship
between the difference scores between the multiple choice question (MCQ) section
and constructed response (CR) section in the test, Y, and the ability estimates based
on scores on the MCQ section ¢, to identify groups of test-takers who might have

performed on the test unusually. Their approach involves:

e estimate the ability of persons based on their responses on the MCQ section of
the test

e or each test-taker, work out the difference score between the raw score on the
MCQ section and the raw score on the CR section

e for a group, such as a class or a school, work out the mean of difference scores Y
and the mean of the ability estimates g, . The mean difference score is then

regressed on the mean ability estimate:

Y,=a+bb +¢

(70)

where i denotes the ith group, a and b are the model parameters, and ¢, is the

residual. Groups with the observed mean difference score between the MCQ section
and the CR section outside the 95% interval (or any other specified « level) of the
predicted value are identified as abnormal groups. If the residuals are standardised,
groups with the standardised residuals which are above (or below) 2 standard
deviations (or any other desired values) are flagged. The detection rate at class level
was found to be affected by the type of simulated irregularity.

4.3 Analysis based on similarity of response patterns and other
variables over time

The Jacob and Levitt approach

To investigate whether there was test collusion in individual classes, Jacob and
Levitt (2003) developed a method which uses two class level indices, with one
related to the unexpected class score fluctuations in terms of score gains between
two consecutive years and the other related to unusual similarity in item response
patterns from the students in the same class for blocks of items. Classes which have
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high values on both indices are flagged as potential instances of test collusion.
Thiessen (2007, 2008) and Wollack and Maynes (2011) provided a summary of the
method developed by Jacob and Levitt which is further summarised below.

Index for unusual test score fluctuations

If test scores from different years are placed on the same scale, it is normally
expected that most of the students’ scores increase at a relatively constant rate over
time although variability in score gains between students exists as they are affected
by a range of factors. For a specific class, if the majority of the students have large
test score gains in one year but followed by small score gains (or loss) in the next
year, then unexpected test score fluctuation has happened. Assuming that year t is
the year in which the test of interest was administered, the unexpected test score
fluctuation index SC,, is derived using the following procedure:

e work out the average test score gains from t-1 to t and from t to t+1 for all students
in the class.

e work out the percentile rank of the class’ average test score gains relative to all
other classes in that same subject, grade, and year. The percentile ranks of
growth are rk_gn,,, fromyear t-1toyeartand rk_gn.,,,, fromttot+1

respectively.
e the index SC,, is defined as:

Scht = (rk — gnc,b,t)2 + (1_ rk_ gnc,b,t+1)2 (71)

As is clear from the above definition, the index takes higher values for classes that
show large score gains this year and small score gains next year. It is also clear that
the use of squares in the definition gives more weight to large score gains this year
and large score decline the following year. Classes that have values in the top 95th
percentile of SC,, will be flagged as having unexpected test score fluctuations.

Index for unusual item response patterns within a class

The second index, ANS,,, is used to identify unexpected item response patterns in
students’ answers within the class. This index combines the following four measures:

e Measure for unlikely block of identical answers by students on consecutive
guestions.

A multinomial logit model was used to predict the likelihood of each student
choosing each possible answer on each question, taking into account the
student’s past test scores, future test scores, and background characteristics. The
block of identical answers from the students in the class that were least likely to
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have arisen by chance was identified by searching all combinations of students
and consecutive questions.

If each student in the classroom has unique responses from item m to item n, then
there will be a distinct value of this index for each student in the class. If all
students in the classroom have identical responses across these items, then there
will only be one value of this index (and the value will be extremely small).

The calculations are repeated for all strings from a length of 3 items to a length of
7 items.

It is to be noted that the values yielded by these calculations will be smaller as: (1)
the number of students with identical responses increase, (2) the length of the
string of identical responses increase. Thus, smaller values are associated with
more improbable answer strings within a classroom. The minimum value of this
measure for each classroom is recorded as measure 1:

Measure for the correlation in student responses across the test

This measure is intended to capture more general patterns of similarity in student
responses beyond just identical blocks of answers. It is derived from the residuals
for each item choice for each student in the class calculated based on the
predicted category probabilities from the multinomial logit model. This is to a
degree also a measure of within-class correlation in student responses. This
measure, measure 2, will take high values for a class if students in the class tend
to give the same answers to many questions.

Measure for variability in correlation between questions

As there can be many reasons to account for high values of within-class
correlation represented by the second measure (for example, specific topic areas
have received particular attention during the school year which could result in
correct answers from students to the relevant questions), the third measure,
measure 3, which measures the variance in the degree of correlation across
guestions and is calculated as the variance of question residuals from the second
measure, is introduced to detect potential cheating. If the answers for multiple
students on selected questions were changed, there would be high within-class
correlation on those questions, while the within-class correlation on other un-
changed questions would likely to be typical. This would lead to larger cross-
guestion variance in correlations than normal in the cheating classes.

Measure for unusual response patterns for students with the same test scores

This measure compares the responses from students within a class to those from
other students in the system who have obtained the same test scores. It is used to
identify students who answered difficulty questions correctly but easy questions
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incorrectly or missed the easy questions, which may be an indication of cheating.
The measure is calculated based on comparing the class level item scores with
the population item scores (conditioned on the same total test scores). Large
values of this measure would suggest that the responses from a large number of
students in the class deviated from those in the system who have similar total test
scores.

Classes are ranked on each of the four measures discussed above. The
percentile ranks are then squared and summed to form an overall measure for the
second index:

ANScbt = (rk_rn:l'c,b,t)2 + (rk_rnzc,b,t)2 + (rk_m‘?’c,b,t)2 + (rk_m4c,b,t)2 (72)

Classes with overall ranking on this index above the 95th percentile are identified
as having unusual patterns in the responses from students.

Identifying cheating classes

Jacob and Levitt argued that taken individually, the above two indices do not detect
teachers who manipulate the responses of their students. It is possible that some
classes will have unexpected score fluctuations and some classes unusual response
patterns. However, the likelihood of a class that scores high on both indicators
should be small. For classes where no collusion took place, the two indices should
not be highly correlated. In contrast, if a teacher manipulates students’ responses,
strong correlation between the two indices would be expected. For classes with the
95 percentile ranking on both indices, there is potential that test collusion has
happened. Application of this method to real data suggested that about 4-5% of the
classrooms studied potentially had cheated every year.

The two-proportion Z-score approach

Gaertner and McBride (2017) used the two-proportion z-score which is based on the
difference in the school’s pass rate between two years and the difference in the
population pass rate between the two years to identify schools with anomalous
changes in pass rates over time. The effect size of the difference in pass rates
across the years is expressed as Cohen’s h which is considered to be large if greater
than 0.8. Their simulation study suggests that the z-score approach was effective
when cheating occurred in a large school.

The multilevel logistic regression (MLR) approach

Gaertner and McBride (2017) also used a two-level logistic regression model to
investigate school level change in pass rate over time. A student’s likelihood of
attaining a passing score in the second year is modelled as a function of the school
she/he attends and the prior-year pass rate at that school. The school level residuals
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are used to identify anomalous schools. Their simulation study indicates that the
MLR approach was effective in detecting cheating at small schools.

The Bayesian hierarchical linear growth model approach

Skorupski and Egan (2011, 2014) and Skorupski et al. (2017) proposed an approach
to detect cheating and aberrance at group level that uses a Bayesian hierarchical
linear model (HLM) to describe growth in performance on state-wide assessments
(SWAs) over time (three years in their studies). In the model, the scores from
individuals over time are nested within students who in turn are nested within groups.
The model can be expressed as follows:

Yig =B + By (C) + Lo (T) + B3 (GT) + &, (73)
where:

Y

i = vertically linked score of students i in group g with N, students at time
t

G, T and GT = group effect, time effect and group-time interaction effect

respectively

B By By @nd B, = intercept, main effect for group, main effect for time

and interaction effect between group and time

&, =random error with an expected value of zero

igt
Unusually large group-time interaction would suggest potential aberrance. A statistic,
delta (5, ), was proposed to evaluate the effect or size of group-time interaction:

-0
5y =L (74)
O-t

A critical value of 0.5 was suggested for flagging aberrant groups. Results from
simulation studies indicated that the detection rate varied from 55% to 83% with the
Type | error rates varying from 1% to 2% for the simulated conditions.

4.4 Analysis based on relationship with other variables

This section discusses methods used to identify groups with anomalous test results
that are based on relationships between the test being investigated and other
variables. This type of analysis is particularly useful when item response vectors for
individuals are not available. For example, results from school-based teacher
assessment (SBTA) or non-exam assessment (NEA) normally just report an
aggregated score at the overall assessment level. There is potential for inappropriate
marking/scoring of students’ work to take place in SBTAs and NEAs (eg Ofqual,
2012).
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Use of the cumulative logit regression model

Clark et al. (2013, 2017) used the cumulative logit regression model to investigate
groups (classes or schools) with unusual performance in a test. Their approach
involves the following steps:

o for the test on which groups with unusual performance are to be investigated,
each individual is classified into one of the J possible performance categories (eg
based on their raw or scaled score and the performance cut scores)

e the predictor variables (X,, X,,.., X,) are continuous (for example, the prior
attainment or scores on different tests). Clark et al. initially proposed the approach
for predicting current year’s performance from previous year’s test scores.
However, the approach could be applied to situations where a suitable predictor or
predictors are available)

e assuming a person with probabilities being classified into different performance
categories (Y,,Y,,..,Y,) to be (7, 7,,..., 7;), the cumulative probability that the
person is classified into performance category j is modelled using the cumulative
logit regression model:

PY <)) o T+ 7y 4+ 7T

log = Po; +Zﬂjixi (75)

1-P(Y <) i+, +.+7,
where {4} and {5;} are model parameters.

e for each person, the probabilities of being classified into individual performance
categories are treated as expected values. The expected count of persons from
group k that are classified into category j, E(P, ), can be calculated as the sum of

the probabilities of the persons in the class divided by the number of persons N;,
in the group:

e for each performance category j for group k, work out the standardised residual as
the difference between the observed proportion P, , and the expected proportion

E(P;.) divided by the standard error (partly related to the number of persons
being classified into the category N, ):
Rjk _ ij,o - E(ij)
JE(POI-E(P)I/ N,
The standardised residuals are expected to be normally distributed with a mean of O
and a standard deviation of 1. At a specific performance level for the group, positive

(76)
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values indicate higher than expected proportion of students from the group that were
classified into the category, negative residual lower than expected proportion of
students being classified into the category. Groups with values of the standardised
residuals greater than 3 could be treated as performing significantly differently from
expected.

Clark et al. (2013, 2017) suggested that particular attention may need to be paid to
groups with extremely large positive residuals. Using simulated data, they showed
that the cumulative logit regression model was considerably more effective than the
weighted least squares regression method in identifying groups with unusual
performance. The detection rate was found to be over 98% for the conditions
simulated. The Type | errors were generally below the nominal levels.

The Regression and cluster based approaches

In many situations, a dependent variable on which outlying members (for example,
classes or schools performed unusually on an achievement test) are to be identified
is modelled using one or more independent variables. A member is flagged out as an
outlier if its observed value on the dependent variable is significantly different from
that predicted by the model. Simon (2014) suggested that many existing methods
identify outlying schools with respect to all the schools included in the analysis and
refers them as global outliers. He argues that schools with suspicious behaviour may
not exhibit sufficient extremity to be identified as global outliers. But such schools
may be regarded as outliers when compared with their peers — schools which are
similar in many relevant aspects or similar values on the independent variables. He
suggested that conventional techniques lack the ability to identify local outliers.

Using data mining techniques, Simon developed an approach, the Regression based
Local Outlier Detection algorithm (RedLOD), which can be used to identify groups
which are local outliers with respect to a variable of interest. The basic assumption of
this approach is that schools which have similar values on a set of independent
variable should also be expected to have similar values on the dependent variable.
This approach involves the following stages (see Simon, 2014):

e data preparation. For both dependent and independent variables, the raw data
may be transformed onto different metrics and values for individual students are
aggregated to produce school level data. It is the school level data that is used in
the analysis.

¢ selection of independent variables. For the dependent variable, a set of intendent
variables are selected. One of the approaches that can be used to select
independent variable is through multiple regression. Contributions from the
independent variables to the amount of variance in the independent variable that
can be explained by the regression model can be examined.

e assessing the importance of independent variables and identifying peer schools.
Once a set of independent variables have been selected, their relative importance

67



Statistical techniques for studying anomaly in test results

in identifying peers is determined through their weights which will be used to
identify peer schools using the following steps:

1. Initialize all weights for the independent variables to w, (k=1,2,...,K, whereK is

the total number of independent variables)

2. The weighted Euclidean distance between school i and j, D, , is calculated as:

ij
K

D, = ZWk (X4 — ij)2 (77)
k=1

where x,; and x, are the values of schools i and j on independent variable x,
3. For each school s, form its current peer group P, by selecting the closest pre-

determined number of schools. Perform regression analysis using the data from
the schools in the peer group and obtain the coefficients. Normalize the
coefficients so that the absolute values of the coefficients sum to 1. The

coefficient of the k-th independent variable for school is denoted as C, .For

each school, a set of regression coefficients are obtained.
4. The weight w, for the k-th independent variable is then recalculated as the

mean of the corresponding coefficients of all schools (total number of S ):

The weight for an independent variable is therefore related to its ability in
predicting the dependent variable within peer groups.

5. Repeat steps 2-4 until the sum of the squares of the difference between the
coefficients for two consecutive iterations is less than a pre-specified threshold.
A value of 0.001 was used by Simon (2014).

Practical implementation of the above procedure may need to consider
computational implications. In his study, Simon used 100 randomly selected
schools to estimate weights. A value of 0.03 was use as the distance to identify
peer schools.

identifying local outliers within the peer groups. For the dependent variable on

which outlying schools are to be identified, empirical p- value derived using

bootstrap resampling with replacement can be used. The following steps will need
to be taken:

o for each school s, draw a bootstrap empirical distribution of the dependent
variable from its peer schools (the school s itself is excluded). For each
bootstrap sample, a p-value is calculated for the school. Repeat the sampling
and work out the average p-value over the bootstrap samples. A small p-value
would indicate that the school performed unusually better than its peers.
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o flag schools with small p-values (eg p<=0.05) or schools with a low number of
peer schools (less than 10)

Simon used the RegLCD approach to investigate local outliers for large scale real
tests in a number of subjects and across several grades. He compared his method
with other methods used to identify global outliers and showed that it was able to
identify outlying schools which were missed by the other methods.

Multilevel modelling

The relationship between the test being investigated and the variables concerned
can be modelled using linear regression models, including multilevel regression
models. Multilevel models have been used in value added analysis extensively and
also used for statistical moderation of results from school-based assessments in a
number of countries (See, Kim and Lalancette, 2013; Hong Kong Examinations and
Assessment Agency, 2012). He and Stockford (2015) proposed to use a two-level
linear regression model with random intercept and fixed slope effects to identify
schools (or test centres) that might have performed unusually on school-based non-
exam assessment (NEA) components in relation to their performance on external
exam (EE).

This model can be expressed as:

Yij =ﬁ0j+ﬂ1jxij+gij
ﬂOj = Yoo 1 U (78)
Bii = "o

where:

Y; : the score of student i from centre j on the school-based NEA

X..: the score of student i from centre j on the external exam assessment
Yoo . Model parameter representing the fixed effect component of the intercept
U,; - random intercept component at centre level

B,; - model parameter representing fixed effect for the slope of the regression

line at centre level
&; - student level random error or residual

Graphically, this model produces centre regression lines which are parallel (having
the same slope },;) and intersect with the y-axis at different locations (or with

different values for the random component u,; of the intercept). Since only the

intercept can take different values for different centres, differences in the intercept
values would represent any systematic differences in scores awarded on the NEA
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component between schools, taking into consideration the effect of exam
assessment scores. Therefore, the intercept could be used to identify schools that
might have performed unusually on the non-exam assessment component.
Furthermore, since values of u,; are centred on y,, (the intercept of the average

line that crosses students from all schools), it represents the departure of the
intercept for the centre from the average of all centres.

The following steps would be needed if using the approach described above to
identify centres for which further moderation process may need to be taken:

e analyse the data using the model specified above with a multilevel modelling
software
e rank order schools based on their values of the random intercept component u,,

e centres with values of u,; greater than 3x O, (the standard error of the intercept
estimate arising from the model fitting process) may be regarded as outliers

Given the complex nature of multilevel modelling, implementation of the approach
described above for operational use will likely involve the use of specialised software
packages or, at least, bespoke routines implemented in standard statistical software
packages.

Simple linear regression analysis

While a multilevel level model may describe the relationship between variables with
a hierarchical structure more accurately than conventional linear regression models,
its implementation for operational use may be complicated. He and Stockford (2015)
described a procedure involving the use of the simple linear regression approach to
identify schools with unusual performance on the NEAs. The simple linear regression
model, which is similar to the linear regression model proposed by Li et al. (2014),
can be used to describe the relationship between the NEA component and the EE
assessment component can be expressed as:

yi:ﬂ0+ﬂx+gi (79)
where:

y; : the score of student i on the non-exam assessment

X.: the score of student i on the exam assessment

& . residual or random error

£ and f,: model parameters representing the slope and intercept of the
regression line respectively

70



Statistical techniques for studying anomaly in test results

Equation (79) can be applied to students from individual centres or students from all
centres. Model parameters in conventional regression analysis can be estimated
using the least squares method (minimising the sum of the squares of the residuals).
When it is applied to students from all centres, the hierarchical structure of the data
is ignored. When it is applied to individual centres, different values for the model
parameters may be produced for different centres. Use of the simple linear
regression model represented by Equation (79) for statistical moderation would need
to assume that the relationship between the two variables are similar for all schools.
That is, values of the model parameters should be the same across the schools,
taking into consideration any statistical uncertainties associated with their estimation.

To use the simple linear regression analysis approach to identify centres with
unusual performance on the non-exam assessment, Equation (79) can firstly be
applied to students from all centres and the global model parameters are estimated,

which are denoted as S,, and g, ,, respectively. For each school, the relationship

between the two variables is assumed to be linear and the slope of the line takes the
same value as that of f,,, but the intercept can take different values for different

schools (ie the relationships between the two variables for the schools are
characterized by parallel lines, as in the case of the multilevel modelling approach
discussed earlier). Therefore, for a specific centre j:

Yii = B + BjoXji + € (80)

And the intercept g, for centre j can be calculated from B,, =y, — B,,X; wWhere y; is
the average score of students from centre j on the non-exam assessment, and X; is

the average score of the students on the exam assessment. This ensures that the
line crosses the centre of the data points from the centre. The standard error o, ; of

the intercept estimate j;, may be estimated using the following equation:

where N;, o; and 0, are the number of students in centre j, the standard error of

estimate (the standard deviation of the residuals) and the standard deviation of the
predictor respectively. o; and 0, are defined as:

Z[yji _(ﬁjo +IBA||in)]2
7= N —2
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Because the lines have the same slope, any systematic difference in the relationship
between the two variables among the centres will be reflected only by the difference
in the values of the intercept parameter f;,. Centres with high intercept values

performed better on the NEA than centres with lower values although their
performance on the exam assessment may be similar. To make comparison
between centres more meaningful and easier, a mean value of the centre intercept
can be calculated and the centre value can then be compared with this mean value.

To use the procedure described above to identify schools that may have performed
unusually on the NEA, the following steps would need to be taken:

e model the relationship between the two variables with Equation (79) using
students from ALL centres to estimate the global model parameters (f3,, and

ﬁO,AII)

e for each centre, assume that a linear relationship between the two variables exists
and the slope of the line is the same as the global slope f,,

e work out the intercept of the line for the centre g,

e calculate the mean of the centre intercept values which can be denoted by f......
(or use the global intercept value g, ,, obtained using students from all centres)

e calculate the difference 443;, between the centre intercept value and the mean for
all centres (ie 48, = Bjo — Pocenre)- CeNtres with positive difference values

performed better than the average performance of all centres on the NEA, taking
into consideration their performance on the exam assessment. In contrast, centres
with negative values performed below the average performance of all centres on
the NEA. Centres with the absolute value of the difference A5, greater than

three times the standard error (o, ;) of the centre intercept estimate may be
regarded as outliers

The procedure described mirrors the multilevel modelling approach closely but
represents a simplified version that would, arguably, be easier to implement for
operational use. No specific software packages would have to be used for such an
implementation, however, it is still necessary to fit a statistical model. In summary,
this trades some statistical model fitting complexity for additional steps in the
processing and a reduction in statistical power.

A residual analysis approach using standardised scores and principal axis
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If Equation (79) is applied to students from all centres, a residual analysis or “value
added” approach could also be developed and used for identifying centres which
may be regarded as outliers (see He and Tymms, 2014; He and Stockford, 2015).
The “value added” relationship considered here is between students’ EE
performance and their NEA mark. (Note that the term “value added” as being used
here differs from its frequent use in the field relating prior attainment to grade
outcome). These would be centres with exceptionally high (or low) values on the
value added measure. To make a comparison between centres, instead of using
Equation (79) to represent the relationship between the performance on the NEA
and that on the EE, the principal axis may be used. For a bivariate dataset, such as
that considered here, the principal axis is the line of symmetry on which the variance
of the data points is maximised. When measures on both variables are standardised
to have the same mean and standard deviation, the principal axis is reduced to the
identity line:

Y, = X; +R (81)

where Y, and X, are the standardized scores of student i on the non-exam and
exam assessments respectively, and R, is the residual. Equation (81) suggests that,
for student i, given his/her observed score X, on the exam assessment, his/her

expected or predicted score on the NEA (the average score on the NEA for students
with similar exam scores) would be also X..When the residual R. (=Y, - X,) is

positive, the student performed better on the non-exam assessment than the
average performance of students with similar exam performance. If the residual is
negative, the student performed below the average of the students with similar level
of exam performance.

For centre j with N, students, the average value added \ﬁj is calculated as:

Nj

- 1 1 i
= = ~X. 82
VA, N,.Z:l:R' Nj; X.) (82)

This average value added may be used as a measure for quantifying any systematic
difference in performance on the NEA between centres, taking into consideration the
performance on the exam assessment. As the average value added for all centres is
zero, centres with positive value added performed better on the NEA than the
average performance of centres with similar exam performance. Centres with
exceptionally high positive or negative “value added” measures could be regarded as
outliers.

This approach would involve the following steps:
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e standardize both sets of raw scores (NEA and EE) to have the same mean and
standard deviation, for example, 0 and 1.0 respectively.
o for each student, work out their value added score R =Y, — X, (based on the

standardised scores) to create a set of value added scores
e for each centre, work out their mean value added score ﬁj

e work out the standard deviation of the centre level value added scores o,

« if the absolute value of the centre level value added VA, is greater than 3x oy,

then the school may be treated as outliers

This procedure is easy to implement for operational application as it does not require
the fitting of any statistical models and would not need use of any specialised or
statistical software packages.

5. Concluding remarks

A range of statistical techniques have been developed to study anomaly in results
from high-stakes tests and assessments. These generally involve statistical test of
significance in difference between the observed item response patterns or test
scores from test-takers and those expected from theoretical/empirical models or the
responses and scores from other test-takers in the sample or population. Such
significance test involves the analysis of:

e response patterns on items from individual test-takers in relation to those expected
from theoretical/empirical models or from other test-takers

e item responses and test score distributions within groups of test-takers in relation
to those expected or from other groups

¢ relationship between performances on different subsets of items in the test for
individuals and groups

e relationship between the performance on the test and performance on other
variables for individuals and groups

Many of the methods reviewed have been developed or used to detect anonymous
responses and scores from high-stakes tests and examinations associated with
cheating or test collusion at individual test-taker level or group level. Cheating in
high-stakes testing can take various forms, including test-taker cheating; teacher
cheating, test coaching, either by a classroom teacher or from a review course;
systematic answer sharing during the test; use of harvested items; inappropriate
marking or scoring of test-takers’ work; and others (see Wollack and Mayes, 2011;
Belov, 2013). Cheating and collusion have been a concern for assessment
providers, the relevant authorities, and other users of test results. With the rapid
advance in technology, new technigues are being increasingly used in cheating,
which makes cheating more sophisticated and difficult to detect using conventional
means, and statistical approaches can provide useful information. It should however
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be emphasised that there can be many other factors other than cheating that can
produce anomalous responses and test scores. For example, if the test is
inappropriate for the test-takers being tested in terms of the levels of ability and the
type of skills and knowledge being assessed by the test, or the test-taker behaves
unconventionally when answering questions (eg random guessing, language
deficiency, creative interpretation of test items), anomalous responses and scores
may result (see Meijer, 1996a, b; Karabatson, 2003; Thiessen, 2008). As Bishop and
Stephens (2013) suggested, statistical techniques used to detect cheating
behaviours can identify statistically unusual patterns in test data. Although they can
provide some kind of likelihood-based conclusion about possible cheating for those
who are interested in the performance of the test and use of the results, it is
impossible for them to prove that cheating or test collusion has actually happened.
Rather, they demonstrate how extremely unlikely the identified anomalous results
would happen based on the given underlying assumptions made about the models
used to analyse the test data.

It is also worth noting that the same test data may be analysed using different
methods to detect the same or different aberrant behaviours. In situations where
different methods can be used to the whole dataset or parts of the dataset,
application of multiple methods may be beneficial as different methods examine the
data from different perspectives. A high percentage of respondents simultaneously
flagged by several aberrant indices could be an indication of aberrant response
behaviour (eg Meijer and Tendeiro, 2014; Plackner and Primoli, 2014). Further,
multiple methods may also be used to identify the extent to which different methods
account for variation in detecting test-taking irregularities associated with test
collusion (see Plackner and Primoli, 2014).
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