Research Report DCSF-RW007

Options for the Funding Formula for Children's Social Services

Roy Carr-Hill and Paul Dixon Centre for Health Economics, University of York

Charlie Owen Thomas Coram Research Unit Institute of Education, University of London

department for children, schools and families

Options for the Funding Formula for Children's Social Services

Roy Carr-Hill and Paul Dixon Centre for Health Economics, University of York

Charlie Owen Thomas Coram Research Unit Institute of Education, University of London

The views expressed in this report are the authors' and do not necessarily reflect those of the Department for Children, Schools and Families

© University of York 2007 ISBN 978 1 84775 017 4

TABLE OF CONTENTS

- I. INTRODUCTION
- I.1 Background and purpose of study
- I.2 Volume of and variations in activity and cost
- I.3 Arrangement of report
- II REVIEW OF OTHER MATERIAL AND MAIN ISSUES ARISING
- II.1 Literature on need drivers for PSS for children and young persons
- II.2 Current formulae used in the four nations
- II.3 Materiality and sensitivity of formulae
- II.4 Unmet need
- III. DATA SOURCES AND APPROACH
- III.1 Choice of level of analysis
- III.2 Standard data sources available
- III.3 Possible approaches to Small Area analyses
- III.4 A possible survey of individual clients
- III.5 Agreed final approaches
- IV SMALL AREA ANALYSIS OF CIN 2003 DATA SET
- IV.1 The Data Set
- IV.2 A Note on Homogeneity and Size
- IV.3 Dependent variables
- IV.4 Supply variables
- IV.5 Structure of data and statistical techniques
- IV.6 Initial exploratory analysis of distributions and correlations
- IV.7 Initial multivariate analysis

- IV.8 Initial final set of recommended options
- IV.9 Runs without Minimum Distance
- IV.10 Conclusion

V. SMALL AREA ANALYSIS OF WARD LEVEL DATA FROM SELECTED AUTHORITIES

- VI INDIVIDUAL LEVEL ANALYSIS OF CIN 2003 DATA
- VI.1 Analyses using CiN Census data and attributed characteristics
- VI.2 Combination of individual level CIN 2003 with HSE data
- VII POSSIBLE WAYS OF ADJUSTING FOR UNMET NEED
- VII.1 Comparing predicted and actual values
- VII.2 Residual Analysis
- VIII RE-ESTIMATING WITH A NEW BASE POPULATION RANGE
- VIII.1 New variables
- VIII.2 Modelling with the reduced age range
- VIII.3 Runs in subsets of areas with high proportion of ethnic groups
- VIII.4 Commentary
- VIII.5 Conclusion
- ANNEXES (Details at beginning of Annex section)

LIST OF TABLES

Table A	Recommended models with Minimum Distance
Table B	Recommended Model with 0-19 age group as denominator
Table C	Multi-Level modelling results with new dependent (NUNIT2CR)
Table 1	Comparison of 'Typical' Children and Children in Care
Table 2	Family characteristics of children by legal category on entering care, compared with all children (Source: Bebbington and Miles, 1989, Page 355)
Table 3	Average cost (\pounds /week) per child receiving a service based on a sample week in February 2000 England \pounds per week
Table 4	Age and sex of clients in CIN 2003 Census
Table 5	Ethnicity of clients in CIN 2003 Census
Table 6	Main costed care components for clients in CIN 2003 Census
Table 7	Average hours of work per child receiving a service based on a sample week in February 2000
Table 8	Within ward and postcode district variability for unitary authorities
Table 9	Correlations between density and other independent variables
Table 10	Correlations between density and dependent variables
Table 11	Independent variables appearing in different options
Table 12	Recommended Model from CiN 2003 Small Area analysis
Table 13	Ward Level Linear Run with adjusted Cost Dependent
Table 14:	Results of Individual Level analysis
Table 15:	Local authority base of postcode districts with large numbers of clients
Table 16:	Local authority base of postcode districts with large numbers of clients
Table 17:	Significant correlations between Residuals and Candidate 'Needs Drivers'
Table 18:	Variables entering the different Partial Models (all OLS)
Table 19:	Descriptive statistics of age variables

- Table 20:Postcode Districts with relatively large numbers of 18 and 19 year olds
- Table 21:Old and New Weight variables
- Table 22:
 OLS Regression with new dependent (NUNIT2CR), new weight
- Table 23:Multi-Level modelling results with new dependent (NUNIT2CR)
- Box 1 Comparison of Formulae between the Four Nations of the United Kingdom
- Box 2 Description of Children in Need census 2003
- Figure 1 Plots for Unit Cost Dependent
- Figure 2 Plots for Numbers Dependent

EXECUTIVE SUMMARY

This report presents the findings of a study of the pattern of social services for children and young people up to the age of 18 in England. There clearly are wide variations in spend per capita between local authorities.

What we know from previous work

Previous research has shown that factors such as broken homes, overcrowding and poverty are unambiguous risk factors associated with the use of children's PSS. Given policy changes, it might be expected that, in addition to the deprivation factors identified in previous studies, the prevalence of "children in need" would be extended to embrace factors associated with the health of the child and its family, and the prospects for the child's development. The role of ethnicity is complex: the limited research that exists suggests that it is mixed-race families rather than families in any one ethnic group that are more likely to require services.

Similar factors have been included in the formulae for all four countries of the UK, but equally similar issues have recurred in developing and implementing the formula. These are: the availability of up-to-date data for the indicators that are used at the different levels; the materiality and sensitivity of the various indicators that are included in the formulae proposed; and the issue of unmet need. The move from census-based formulae to those based at least in part on updateable data like the claimant counts or the IMD Scores is also evident.

Unmet need

In other sectors, attempts have been made to take into account to identify and take account of unmet need. Essentially, there are three approaches:

- a normative assessment of what factors should be included to address issues of unmet need, and then agreement over their weight;
- using an additional population survey that identifies need independently of utilization; and, finally,
- statistical adjustments to the formula.

The first two are impracticable in this context: the first because it is unlikely that a consensus would be reached among LAs; the second because there is no independent population survey. The first statistical approach is based on a demonstration that the use of services among most deprived areas is less than one would expect relative to an independent measure of need (or an independent measure of deprivation). The problem in this case is that there is no obvious independent measure of need. An alternative is to use the 'spline' regression technique, where, for example, the square of an already included variable is defined for only the most deprived segment (the 'spline') of the population. A prior issue is whether there are any patterns in the residuals for which such an approach might be appropriate

A second approach involves arguing that the average value of the slopes relating cost to need obtained from the results of the model within each authority is not the best for the purposes of setting allocations, but that instead the average of the slopes in the most 'progressive' authorities (those where the gradient from least deprived areas to the most

deprived areas is the steepest) should be used. The problem is the same; there is no theoretical justification for any of the exclusions proposed.

Data sources and approach

The two main types of data required are: data on service activity; and data on the characteristics of small areas that may give rise to the need for services. Standard sources were used for the latter including census, claimant counts and IMD scores.

For service activity, a possible survey of individual clients was considered but ruled out because of clashes with data collection for CIN 2005. The final agreement was to explore the following options:

- ▶ the national CIN 2003 data covering all 141 authorities at postcode district level
- > data from a selected number of Local Authorities at the synthetic ward level
- individual level analysis of CIN 2003 data with socio-economic information attributed from the postcode district level
- > combination of individual level CIN 2003 with GHS or HSE data

Small Area Analysis of CiN 2003 Data Set

There was a concern that postcode districts were too large and would therefore be too heterogenous. In fact, with the single exception of the proportion of ethnic minorities, we find that postcode districts are *more* homogenous than synthetic wards.

Dependent variables:

Three variables were derived from the CIN data:

- the number of clients originating from a postcode district per thousand inhabitants aged 0-19 in the district
- two versions of the cost of providing services to clients originating from a postcode district per thousand inhabitants aged 0-19 in the district

The cost variables are preferred because they correctly reflect the workload of social services. The first version of the cost variable uses the costs per child as reported in the CIN census - deflated by the area cost adjustment for children's social services. The second takes the same costs, and deflates them as before, but then computes national average costs for service combinations. Unit costs were computed for the 50 distinct care combinations in the data set. These national average unit costs are then assigned to all clients receiving the care combinations and the costs summed for each postcode district.

Supply Variables:

There are two supply issues: the likelihood of a child being referred by the parents (or even self referred) in the first place; and the level and type of effort by social workers. After discussion, the variable used has been the accessibility of the catchment population of children to the services, measured by the mean distance between the centroid of each postcode district and the nearest area office for a social services authority.

Exploratory Analysis:

The cost variables showed very high levels of skewness and kurtosis, which implied that the chances of reaching a specified model were slim. At the same time, several of the independent variables were highly correlated with the dependents suggesting that the model would provide powerful predictions.

A variety of preliminary analyses using OLS were carried out experimenting with different functional forms. The following variants have been attempted:

- Logarithm of dependent only
- Logarithm of both sides
- Square root of dependent
- Linear dependent and square of significant variables
- > Selected interaction terms in the linear model; and
- Re-run with postcode districts assigned to only one local authority

Runs with Supply Variable -

In all runs, the 'supply' variable is always negative implying that those further away from a service provision office use the services less. This caused some surprise but is a consistent result. Given that this effect is also statistically significant (in all except the individual cost OLS run), there is the issue of how to treat that variable: either as a control, in which case its coefficient should be ignored, or as part of the model.

The 'children without good health' variable appears in five out of six runs, the 'combined adult income support' variable in four of the six and 'children in lone parent households', 'lone parents on income support' and 'children in black ethnic groups' in 3 of the six. The pattern of variables appearing in the different runs shows that, overall, the multi-level models are more consistent in terms of the variables included.

Runs without Minimum Distance

Among other dimensions of deprivation, 'children in lone parent households' enters two equations and 'children in routine occupation households' enters only once, whilst the 'children in black ethnic groups' enters five of the six equations. The density variable appears only in the multi-level modelling.

Conclusion

Including the supply variable (minimum distance to an area office)

None of the OLS models fit the data very well, and examination of the plots suggests that this is because the models do not really capture the high cost areas, but the square root models appears to be capturing the shape of the distribution of the residuals better than either the untransformed cost dependent or the logarithmic dependent. Essentially the test of specification in OLS is sensitive to the form of the dependent. If the clustering within local authorities is taken into account through using multi-level modelling, however, the runs with linear dependents are well-specified. We therefore recommended the two models in Table A.

Table A - Recommended models with Minimum Distance

	Model I	Model II
	Unstand. Coeff.	Unstand. Coeff.
Lone parents on income support	41990	
Children in income support/income based JSA		5594
households		
Children without good health	19690	10550
Combined adult income support	13170	15970
Children in ethnic mixed households	10310	
Children in black ethnic groups	4406	5418

Without the supply variable (minimum distance to an area office)

The multi-level model provides a consistent picture of effects and is very well-specified except with the numbers dependent and even the latter is better specified than OLS runs. Thus, in the new model, the deprivation top-up is calculated based on the following four factors:

- the proportion of children without good health;
- the proportion of income support/income-based jobseeker's allowance claimants aged 18 to 64 years;
- the proportion of children of income support/income-based jobseeker's allowance claimants; and
- the proportion of children in black ethnic groups.

Table B - Recommended Model with 0-19 age group as denominator

	Estimate	St. Error (U)	Prev. Estimate
(Constant)	278.4	325.7	178.7
Children without good health	11890	4579	11370
Adults on Income Support/JSA	15790	3298	22420
Children of Income Support/JSA claimants	5947	1864	5328
Children in black ethnic groups	5378	1247	4724

Overall, the initial combination (income support, poor health and ethnic minorities) appears to be a good balance of variables, although one may prefer to include the 'children in combined income support households' variable rather then the 'adults in combined income support households'.

Small area analysis of Ward level data from selected Authorities

The Ordinary Least Squares model [run with ward level cost data] with the cost variable (computed as above) leads to a reasonably specified model as in Table 15, with a subset of the variables included in the postcode district runs. We take that as supportive evidence that the two area bases produce similar results.

Individual level analysis of CiN 2003 Data

Although all the independent variables are highly statistically significant, the model is only of very limited explanatory power; always less than 5% R squared whatever combination of variables or functional forms are used. However, given the debate about the relative costs of children from different minority ethnic groups, it is interesting to see

that relative to the overall average, most ethnic groups cost less than the average whilst the mixed ethnic group cost more than the average.

Possible ways of adjusting for unmet need

Graphs have been plotted comparing the predicted values at the end of the first stepwise run with the predicted values from runs after eliminating any negative or statistically insignificant variables. These, reassuringly, display an almost perfect straight line confirming that the process of eliminating variables does not substantially change the picture. The predicted and actual values have been compared. In each case, these appear to show there is a 'shortfall' in that - in high cost (or client number) areas - the predicted values fall short of those actually observed. Other writers take this to be evidence of 'unmet need' meaning that the estimated equation is not accounting for high costs among presumed deprived populations or areas.

To test for variables that might be reconsidered for the model - and which might correct for any non-linearities - residuals from the recommended model are correlated with the full set of potential need drivers. Only 26 correlations are significant at the 5% level in this exercise and even these 26 have to be treated with extreme caution as there are 150 correlations so one would expect between 7 and 8 to be statistically significant. This was not pursued further.

Re-estimating with a new base population range

There was a concern that 18-19 year olds should be excluded from the denominator. The following variants have been attempted:

- Introducing the new density variable (it is not statistically significant)
- Deleting the ethnic black variable (it does not improve specification)
- Restricting the model to the 310 postcode districts with more than 20% of either ethnic Asian or ethnic black children (produces similar results)

The areas with large numbers of 18-19 year olds are where students in redbrick universities live rather than London. The use of the new weights does not make a great deal of difference, although it has worsened the specification of the variables.

The final recommended model with 0-17 year olds as the denominator was as follows (Table C).

Table C:	Multi-Level modelling results with new dependent	(NUNIT2CR)

Random Coefficients		
LEV. PARAMETER (NCONV)	ESTIMAT	E S. ERROR(U)
2 Constant Variance at Level 2 (7)	2.27e+06	3.544e+05
1 Constant Variance at Level 2 (9)	7.753e+06	2.409e+05
Fixed Coefficients		
PARAMETER	ESTIMATE	S. ERROR(U)
C31 Constant	-61.66	393.4
C11 Children not in good health	1.608e+04	5513
C15 Children in income support households	1.136e+04	2243
C26 Children in black ethnic households	6129	1512
C17 Adults on income support or JSA	9109	3972

OPTIONS FOR THE FORMULA FOR CHILDRENS SOCIAL SERVICES BASED ON ANALYSIS OF THE CHLIDREN IN NEED 2003 DATA SET

I. INTRODUCTION

I.1 Purpose and background of study

Purpose

This report presents the findings of a study of the distributional pattern of social services for children and young people up to the age of 18 in England provided by LA social services. The study was one of three commissioned by the Department of Health to produce options for improved and updated formulae for allocating central government funding to councils with social service responsibilities under the Formula Spending Shares (FSS) system.

In 2006/07 the Relative Needs Formula (RNF) replaced the FSS formula. This report presents the background and detailed analyses justifying the replacement of the children's social services formula. Further information on the calculation of RNF formula is available on the Department for Communities and Local Government website, http://www.local.communities.gov.uk/finance/0607/simpguid.pdf.

Background

The Government's vision for children's services, *Every Child Matters*, was published in September 2003 and formed the basis of the new Children Act 2004. The Act covers the universal services which every child accesses (e.g. health, education, leisure), and more targeted services for those with additional needs. The overall aim is to encourage integrated planning, commissioning and delivery of services as well as to improve multi-disciplinary working and increase accountability, with the aim of achieving five key outcomes for all children and young people:

- Be healthy
- Stay safe
- Enjoy and achieve
- Make a positive contribution
- Achieve economic well-being

The social services functions of local authorities arising from the Children Act 1989 remain unchanged, but it is the Government's intention that the way the services are delivered will change as they 'become integrated around the child or young person and their family and carers', and there will be an increased emphasis on early identification and earlier intervention (Every Child Matters: Change for children in Social Care).

Under the 1989 Children Act, a child is in need if:

a) he is unlikely to achieve or maintain, or to have the opportunity of achieving or maintaining, a reasonable standard of health or development without the provision for him of services by a local authority....;

- b) his health or development is likely to be significantly impaired, or further impaired, without the provision for him of such services; or
- c) he is disabled.

(from section 17(11) of the Act). The Act sets out the principal duties for local authorities (Department of Health, 1989):

- a) identification and assessment of potential children in need;
- b) prevention of neglect and ill-treatment;
- c) provision of family support for children in need who live with their families;
- d) providing services for disabled children.

The Children's Social Services (CSS) resources distributed to Local Authorities are designed to support the provision of all services provided for children. This includes adoption and foster care, children in residential care, those on child protection registers, day care and social work support, and associated administration costs.

The current formula for CSS resources is based on the population of children in each Local Authority, weighted by an index of area deprivation developed by the University of York. The index combines five factors: income support, limiting long-term illness, one adult households, children living in flats and population density¹.

The formula also incorporates an adjustment to reflect the varying costs of recruiting and retaining foster carers, based on research from the Thomas Coram Research Unit at the Institute of Education, University of London². This adjustment applies to 19.4% of the children's sub block total, the proportion of CSS expenditure that relates to foster care, and uses two variables: country of birth and social class.

The aim of this research is to produce options for an improved and updated formula for CSS, focussing only on the needs component of the formula, and not on the area cost adjustment for variations in input prices. The research should cover all children needing CSS, including specific consideration of children with physical and learning disabilities and of children from ethnic minorities. All services arranged and funded by local authorities should be covered whether or not provided by the local authority.

The requirement was to develop a formula that provided the best possible reflection of local variations in needs for social care amongst the child population. Options were to be methodologically robust, based on recent data and reasonably simple to implement. The work needed to take account of the wider context of full DfES funding and the boundaries of responsibility for providing and funding services, especially where educational and/or health services can jointly support social services clients and may have principal responsibility for arranging support. Clearly this was an issue for clients with physical disabilities and, in particular, for children with learning disabilities. The options had to be suitable for potential implementation from 2006/7.

¹ See "The Determinants of Expenditure on Children's Personal Social Services" Carr-Hill et al, British Journal of Social Work 29(5): 679, <u>http://bjsw.oupjournals.org/cgi/reprint/29/5/679.pdf</u>

² This work is described in the report "Demand and Supply of Foster Care" attached to the invitation to tender document as report 1.

I.2 Volume of and variations in activity and cost

The latest figures for expenditure at the time of the study on Personal Social Services were for the financial year 2003-04, (CIPFA, 2005) and therefore predate the new Children Act. The net total cost of Children's and Families Services in England for 2003-04 was just over £4 billion, which represents £362.84 net cost per head of population aged under 18. The most costly elements of the Children and Families Services budget were Commissioning and Social Work (£1 billion) and provision for Children Looked After (£1.8 billion), of which children's homes accounted for £870 million and fostering services £800 million. Ward et al (2004) showed the variation between the costs of different placement types. The standard unit cost for maintaining a child for a week in residential care was eight times that of the cost of foster care, 9.5 times that of a kinship placement and 12.5 times that of a placement with own parents.

There were significant geographical variations in net cost per head of population aged under 18, ranging from £258.93 in the English Counties to £573.97 in London Boroughs. The gross cost per week for residential care (own provision) was £1,982 in England, with only small regional variations, ranging from £1907 in Metropolitan Districts to £2,037 in London Boroughs. There was greater regional variation in foster placement costs, from £250 in Metropolitan Districts to £319 in London Boroughs (own provision) and from £737 in English Unitary Authorities to £811 in English counties (other provision). As well as variations according to type of authority there are significant variations between local authorities in the same region. For example the gross cost per week of providing children's homes (own provision) in Southwark is £4,029 compared with £992 in Wandsworth.

As well as variations in costs of care in individual cases, there are regional variations in overall cost. Expenditure on Children's and Families' Services represented 30.2% of the Personal Services Gross Total Costs in Inner London authorities, compared with 19.7% in the English Counties (CIPFA, 2005). Activity rates varied also. The number of children looked after at 31 March 2004 averaged 55 per 10,000 children aged under 18 in England as a whole, but ranged from 75 per 10,000 in London to 42 in the East Midlands and the South East. At the authority level, the range was even greater: 15 per 10,000 in Wokingham and 23 in Windsor and Maidenhead to 137 in Manchester (DfES 2005).

Variations in costs and activity rates may be the result of numerous factors, such as local policy and priorities, costs of inputs, efficiency and effectiveness of services, quantity and quality of services provided and local accounting practices. Unlike universal services such as education, the provision of social services depends on eligibility criteria and interpretation of the relevant legislation. Differences in activity rates, for example, may be due to fewer children in need or may be the result of different interpretation of the legislation, and potentially rationing of scarce resources; lower costs may reflect cheaper inputs or more efficient use of inputs, or may result from providing a poorer quality service.

Factors associated with admission into care are reported in DfES Statistics of Education which showed that for the majority of young people (63%) abuse or neglect was the main category of need for children looked after at 31st March 2004 (DfES Statistics of Education: Children looked after by Local Authorities Year Ending 31 March 2004, Volume 2: Local Authority Tables. March 2005). Family dysfunction and family in acute stress accounted for another 17% of children/young people being

looked after, absent parenting 8%, parental illness or disability 6% and the child or young person's disability 4%. For 3% of children or young people socially unacceptable behaviour was given as the main category of need. Low income was a factor in less than 1% of cases. These proportions were similar throughout the country, except for London where larger numbers of unaccompanied child asylum seekers affected the figures.

There has been some debate over the role of ethnicity as a risk factor for admission into care. There is no clear evidence that some ethnic groups are more at risk than others with the exception of children of mixed ethnic parentage who display higher admission rates than others.

I.3 Arrangement of the report

The report first reviews in the next section what can be learnt from the literature and the formulae currently in use in the four nations of the UK. It then turns to the range of potential data sources for the modelling (Section III). The main sets of analyses, using data from the 2003 CiN Census on postcode districts (areas defined by the first part of the postcode) are reported in Section IV. There was a concern over the use of postcode districts as the area base because they are larger than electoral wards which have been the conventional units for small area analysis and therefore probably more heterogenous. In addition to analyses to check for heterogeneity (see section IV.2), this concern prompted a further set of data collection and analysis using ward level data from a sample of LAs (Section V). A completely different approach to the modelling - using data on individuals - is described in Section VI, together with our attempts to combine those data with data on children from the Health Survey for England. Methods for identifying unmet need and their relevance to this situation are considered - with supporting analyses - in Section VII. The last section of the report (VIII) reports the effect of changing the upper age limit of clients included in the analysis. The main set of analyses had taken 19 as the upper limit as there are substantial numbers of clients of that age in the CiN data. During the consultation phase of the work we were asked to investigate the effect of lowering that limit to 17.

II OTHER MATERIAL AND MAIN ISSUES ARISING

II.1 Literature on need drivers for PSS for children and young persons

Prior to Children Act 1989

There is a small body of research that has sought to explain patterns of admission into care. Bebbington and Miles (1989) surveyed of 13 of the 108 social service authorities, including 2 Inner London Boroughs, 2 Outer London Boroughs, 4 Metropolitan Districts and 5 Shire Countries. Information on family backgrounds was sought for 2528 children in care. Information on the parental family was unavailable for 356, so the effective sample was 2165 cases. Their circumstances were compared with the characteristics of a sample of 5407 children aged under 17 and not in care drawn from the 1985 General Household Survey.

Bebbington and Miles estimated the effect of a wide range of factors on the probability of admission into care. The broad conclusions of their analysis were that

children admitted into care come from atypical families. Table 2.1 summarizes the key factors identified.

	'Typical'	General Household Survey	'Children in Care'	Bebbington & Miles
Social Security	No dependence	76%	On income support	75%
Family composition	2-parent family	89%	Single adult	45%
Number of children	3 or less	91%	4 or more	24%
Ethnic group	White	94%	Mixed	6%
Tenure status	Owner occupied	67%	Privately rented	66%
Ratio persons:	Under 1	93%	One or more	28%
rooms				

Table 1 - Comparison of 'Typical' Children and Children in Care

Source: Bebbington and Miles, 1989, Page 355

Their analysis of relative risks yielded the following conclusions:

Broken Families - Living with one adult only is the single greatest risk factor: nearly half of all children entering were living with one adult only, compared with just 7% of other children.

Housing Conditions - Living in crowded accommodation is the next most significant indicator: children living in such homes were 3_ times more likely to enter care than people living in a home with more rooms than people.

Receipt of Benefits - Children from homes where the head of household received supplementary benefit were three times more likely to come into care.

Ethnic Origin - Single-race from ethnic minorities are not over-represented amongst children entering care. On the other hand, a child of mixed race was 2 _ times as likely to enter care as a white child.

Mothers Under 21 - This doubles the odds that a child will enter care.

Large Family - Coming from a family of 4+ children only has a comparatively small effect on the risk of entry, although it is associated with many factors that do raise the risk, like overcrowding.

Overall, Bebbington and Miles contrasted the 1 in 7,000 chance of a child from a 'typical' family being admitted into care with the 1 in 10 chance of child with multiple 'poor' characteristics being admitted into care.

The 1989 results of Bebbington and Miles can be compared with an earlier survey carried out in 1962 by Packman *et al* (1986) or about 4500 cases. This suggests that:

- Entry into care was even more closely associated with 'deprived' families in 1987 than it was in 1962, despite the increase in the proportion of behaviourally disturbed and delinquent children groups, which have less than the average levels of deprivation associated with those entering care.
- The factor that most highly correlated with entry had changed from unemployment in 1962 to broken (or 'non-nuclear') family in 1987; and there had been an increase in the proportion of children living in broken homes.

Children came into care at that time (before the 1989 Children Act) by one of three routes: voluntarily; following a criminal offence (mainly boys over 12); or compulsorily in the interests of the welfare (typically slightly younger children who were more likely to be girls). Bebbington and Miles (1989) document the

characteristics of children admitted into care by each of these main routes and found that, whilst there were differences between the groups, they show similar pattern of 'deprivation' (as measured by the variables discussed above).

	Child	General Pop.		
	Voluntary Court Orders			
		Offenders	Others	
Broken (Single Parent) Family	76	57	69	15
Household head gets income	71	48	76	26
support				
Not owner occupied home	80	68	85	28
Crowded home (one or more	55	50	67	21
persons per room)				
mixed ethnic origin	6	5	5	1
(Sample size)	(1659)	(174)	(593)	(5274)

Table 2 - Family characteristics of children by legal category on entering care, compared with all children (percentages)

Source: Bebbington and Miles, 1989, Page 355

In a study of admission into care in Essex, Wedge and Mantle (1991) found that social workers cited disruptive family relationships as a contributory factor in over half of all admissions, and Bebbington and Miles (1989) noted that 'broken family' had replaced unemployment as the factor most highly correlated with entry into care. Parents' own deprivation or ill-health were each mentioned as contributing to about 15% of Essex admissions, but it is noteworthy that social workers seldom mentioned low income, poor housing, unemployment or cultural difficulties. A subsequent study by Stone (1990) of short term fostering in Newcastle reports that social workers considered that three fifths of the children of all ages in her sample had experienced abuse or neglect at some time. Research elsewhere demonstrates that the needs of many children admitted into the care system are related as much to material deprivation and lack of family support as much as wilful neglect or maltreatment. Compulsory separation of children from their families has in general been found to be harmful and only necessary in a minority of cases (Holman, 1980; Department of Health and Social Security, 1985; Packman et al, 1986; Parker and other, 1991; Department of Health, 1991).

There has been some analysis of the role of ethnicity in the risk of admission into care. Although Rowe et al (1989) find some ethnic minority groups over-represented in care, it is not clear whether this is because of ethnicity *per se* or because of deprivation amongst the ethnic groups. Bebbington and Miles (1989) sought to identify the impact of ethnicity independent of other factors, and found that children of mixed ethnic parentage exhibited remarkably high admission rates compared to other ethnic groups, particularly amongst pre-school children. These findings were confirmed by Tizzard and Phoenix (1993).

Finally, Bebbington and Miles also carried out an analysis of 1981 census data to construct a ward based index of adverse social conditions for children. They included the following indicators in an index of deprivation:

- Population density (persons per hectare)
- Proportion of children in households not in self-contained accommodation

- Proportion of children in households lacking basic amenities
- Proportion of children in crowded households (1+ person per room)
- Proportion of children in single parent households
- Proportion of children where the household head was born in the New Commonwealth or Pakistan

After confirming with principal component analysis that these six indicators could in conjunction reasonably be considered as forming a single dimension of deprivation, they constructed a deprivation index by summing the standardized score on each indicator. The highest scoring 1,689 (20%) local authority wards on this index were identified as 'poor' wards. More than one half of children admitted to care in the 13 local authorities came from 'poor' wards, although they contained only one third of all children in the population. In a subsequent paper (Bebbington and Miles 1988), they show that the rate entry into care in areas with many poor wards is higher than would be predicted from family circumstances might be important determinants of entry into care.

There have been no other published reports on population need for children, although there is some material from other analyses carried out to generate formulae for the four nations of the UK.

Conclusions from the pre-1989 literature

The main theme emerging from previous work is clear - that factors such as broken homes, overcrowding and poverty are unambiguous risk factors associated with the use of children's PSS. The role of ethnicity is complex because the limited research that exists suggests that it is mixed-race families rather than families in any one ethnic group that are more likely to require services. However, all the studies described here predated the 1989 Children Act in England, which considerably extended the role of social service departments. In particular, it might be expected that, in addition to the deprivation factors identified in previous studies and discussed above, the prevalence of "children in need" would be extended to embrace factors associated with the health of the child and its family, and the prospects for the child's development.

Children Act 1989

Aldgate and Stratham (2000) carried out an overview of the group of studies undertaken to explore the effectiveness of the Children Act 1989; and Aldgate and Tunstall's own studies on the implementation of the Children Act 1989, S.17 show how social services have responded to evidence of 'need' in implementing the Children Act. For example, Dickens et al (2007) present findings from a study of children who started a period of being looked after by 24 local authorities in England during the 6 months from October 2000 to March 2001. They found considerable variation between authorities in their rates of children starting to be looked after, and explored reasons for these differences.

Whilst these studies are of considerable value in showing the different ways in which social services have reacted to the Children Act and their relative effectiveness, our purpose here is rather different: to identify the factors that *should* affect the relative allocations to different authorities and the weight that should be placed upon them.

Equally, at the time we were undertaking these studies there was a major DH research initiative on costs and outcomes of children's services, one of the purposes of which was to explore reasons for differences in unit costs between authorities. In particular, Beecham (2000) demonstrated the difficulties of assessing unit costs as part of the ongoing Kent work on providing standard unit costs.

Whilst, in this study, we have used the unit costs with which we were provided (based of course on the Kent work), there has been substantial research showing which kinds of factors affect those costs. Thus, recent studies have described the factors that inhibit parental capacity (e.g. Cleaver et al, 1999) or contribute to social exclusion (e.g. the debate on teenage pregnancy). Ward et al (2004) after describing the costs of different types of child care and analysed the factors affecting them; and Selwyn et al. (2004) analysed the costs of adoption in more depth. Some of the findings of Ward et al (2004) would appear to be directly relevant to this research:

- Child related factors include: age, disability, emotional or behavioural difficulties, and offending behaviour. The circumstances of asylum seeking children were also found to produce different cost pathways.
- The children in their study fell into eleven groups categorised by single or multiple combinations of the above factors. They developed a Cost Calculator based on sixteen possible needs groups.
- Children who displayed none of these additional characteristics cost substantially less to look after than those who displayed one of them; costs were found to be even higher for those children who displayed combinations of two or more characteristics. A very small number of children with exceptionally high needs could skew the costs of the looked after population in an authority.

All of these factors in the studies by Ward et al were of course measured at the individual level. The difficulty is that, if we had been able to carry out an individual study based on interviews with social workers, we would have found that information on those factors is not routinely recorded or, if and where it is, would not be made available because of confidentiality. The issue for us, therefore, was the possibility of obtaining corresponding reliable measures at a small area level; sadly, apart from age and disability (measured by limiting long term illness), there is no data at the small area level on these factors.

II.2 Review of current formulae in the UK

II.2.1 England

The first formula in England was that developed by Carr-Hill, Rice and Smith in 1995, based on a little over 1,000 wards from 25 authorities using multi-level modelling. The variables included are:

- Population density
- Children in flats
- Children in Lone parent households
- Children with Limiting Long Term Illness
- Income Support and JSA claimant rate

This formula which was implemented from 1996-97 relied to a large extent on census data that are of course only available every ten years: an issue has become of increasing concern. However, it was one of the first formulae to include ward-level income support data that is available on an annual basis.

An attempt was made in 2003 to re-calibrate the model using the costed activity data from the 1996 work together with 2001 Census data for the needs drivers. It was hoped that the same variables would appear but with different coefficients. Unfortunately, a model with a square root functional form was the only specified statistical model produced with the 1996 dependent variable and updated indicators of need. It was not possible to implement this model during the then formula freeze; and the 1995 model continued to be used until last financial year.

II.2.2 Northern Ireland and Wales

The approaches in Northern Ireland and Wales have been similar to that in England in that they statistically analyse data on small areas.

In Northern Ireland, the most recent formula proposed for the Family and Child Care Programme of Care includes the following four variables:

- Children in income support households
- Proportion of 16-18 year olds not in full time education
- Social environment score
- Children in owner occupation (negative)

Source: Additional Needs Analysis for the Family and Child Care Programme of Care (POC3) Dixon, Carr-Hill and Spollen 2004).

In Wales, the additional needs component of the formula includes the following four variables

- Children in families claiming IS, JSA or Tax Credits
- Children in Enumeration divisions where density is above average
- Children in social rented housing
- Children in overcrowded housing

Source - Chris Williams ORS: RSS Careers Day Wednesday 23rd November 2005 Statistics in the Workplace, NHS Performance Statistics, Welsh Assembly Government

II.2.3 Scotland

Scotland uses an entirely different approach to developing a formula for relative Grant Aided Expenditure (GAE) assessments - the client group approach. This methodology is based on a primary indicator of client numbers, and secondary indicators which seek to capture any "per client" variations in costs. Secondary indicators are selected on the basis of whether they explain significant variations in expenditure at the **local authority level**. In the case of children's social services, the primary indicator is the number of children aged 0-15; and the secondary indicator for children in residential care is the average of two indexes. These are the Number of 0-15 Year Olds Living in Lone Parent Families and the Number of Dependants of Income Support / Job Seekers Allowance Claimants.

The client group method has the virtue that (compared to many other systems in use in the UK) it is readily understood and easily updated. However, the identification and calculation of secondary indicators suffers from a fundamental difficulty. In summary it is that the variations in local authority expenditure may be due to many factors other than legitimate variations in costs. These include variations in policy, variations in efficiency and variations in accounting methods. As presently used, secondary indicators are likely to capture all of these elements, an outcome which may bias GAEs in favour of certain classes of authority.

Duncan and Smith (1995) show how - even in a relatively simple context - it is exceedingly difficult to disentangle needs effects from other determinants of variations in local authority spending if one continues to base secondary indicator choice on expenditure data recorded at the local authority level. For example, one must accommodate the fact that local authority expenditure may in the past have been capped, that previous central government grant affects spending, and that previous levels of spending may in turn have influenced current grant receipts. Moreover, one should in principal recognize that variations in pressures from other services may influence variations in spending on - say - education.

II.2.4 UK formulae

Despite different approaches, similar factors have been included in the formulae for all four countries of the UK (see Figure 2). A variable associated with income support or job seekers allowance has been included in each of the formulae; a variable associated with the type of housing in three of the formulae; and a lone parent variable in the formulae for England and Scotland. Population density was also included in the formulae for England and Wales.

	England 1996	Northern Ireland	Scotland	Wales
Income	IS/JSA	Kids in IS	IS/JSA	IS/JSA/ Tax credits
Support/ JSA		households		
Lone Parents	Lone Parents		Lone	
			Parents	
Type of housing	Children in Flats	Owner Occupation		Overcrowded and
		(negative)		Social Rented
				housing
Pop. Density	Pop. density			Pop. density.
Other	Limiting Long	Not in fulltime		
	term illness	education; and		
		social environment		
		score		

At the same time, there have been similar problems. These are: the availability of upto-date data for the indicators that are used at the different levels; the materiality and sensitivity of the various indicators that are included in the formulae proposed; and the issue of unmet need. The move from census-based formulae to those based at least in part on updateable data like the claimant counts or the IMD Scores is evident from the brief review above. The next two sections consider the other issues.

II.3 Materiality and sensitivity of formulae

No formula can cover the diversity of situations of all children in all local authorities without being far too complex for implementation (and where, for reasons of both accountability and transparency, it is also seen to be important that the formula should be as simple as possible). There, therefore, has to be some prioritisation among possible refinements to the various formulae. A major factor in this process of prioritisation would be the relative spend on different categories of children.

The Children in Need surveys of all service provision during a week provide an example of the distribution of expenditure. Table 3 shows the average cost of Children in Need to a Local Authority in 2000. These averages have been calculated by taking total costs and averaging them out over all children in need receiving a service in the week. The average cost of a Child in Need is £175 per week, of which £70 is costed staff and centre time, £100 is ongoing expenditure, and £5 miscellaneous expenditure. It seems clear from the table that whilst miscellaneous and one-off costs should not be ignored, variations between authorities in those costs should be seen as less important in terms of refinement than variations in the other two categories.

Table 3 - Average cost (£/week) per child receiving a service based on a sample week in February 2000 England £ per week

	Children Looked After	Children Supported in Families or Independently	Total Children in Need
	Amount	Amount	Amount
Costed staff / centre	100	60	70
time			
Ongoing costs	325	20	100
One-off costs	10	5	5
Total costs	435	85	175

These figures are estimates based upon the actual figures received from 137 Local Authorities. Figures may not add due to rounding.

II.4 Unmet need

In principle, of course, all children in need of services should receive services; but there will be exceptions and, basing a formula on an analysis of utilisation will exclude those whose needs are not met. This would not matter if unmet need was distributed proportionately to the existing pattern of utilisation, but that is rather a large assumption. Unmet need generally has two forms: lack of access to or provision of any service, or provision of inadequate service. Thus the current range of children receiving social services may exclude some of some sub-groups, for example those living in mobile homes, or because of cultural barriers to access; and current practices with existing clients may not reflect the full range of needs-related factors. We set out to explicitly search for any 'unmet needs' anomalies and especially in the deprived areas due to the likely patchy coverage of the poorest (because of frequent mobility or because of the difficulty for social workers of tracking children and families in disjointed or fragile households). In other sectors, attempts have been made to identify and take account of unmet need. Essentially, there are three approaches:

- a normative assessment of what factors should be included to address issues of unmet need, and then agreement over their weight;
- using an additional population survey that identifies need independently of utilisation; and, finally,
- statistical adjustments to the formula.

The first involves largely normative judgements on the causes and location of unmet need and can result in rather arbitrary corrections depending on who is involved. The second is based on exploiting population surveys, but the kinds of children who escape the 'net' of social services will almost certainly also escape a typical social survey (see Carr-Hill, 2005), and it is not clear how one would organize a one-off survey to 'capture' them; the only possibility would be a census of the WHOLE population to assess each child's need, but this is clearly beyond the scope of the present project. The third approach encompasses a group of statistical techniques intended to adjust the coefficients in allocation formulae derived from the small area approach (see below). It has become increasingly sophisticated.

Thus, an approach that has been adopted in the health care sector is to argue that, if unmet need is concentrated in areas with higher deprivation scores, then one would expect the nature of the relationship between the need/deprivation index and utilisation to change at higher levels of deprivation. In some analyses, there does indeed appear to be an inflection point in the relationship³ and this has been used as the basis for a possible adjustment to the formula derived through simple consideration of the utilisation data. This approach has been applied in Scotland and England and the present authors are applying them during the present development of health and social services resource allocation formulae in Northern Ireland (see for example Sutton and Locke and McConnachie and Sutton).

Two statistical procedures have been proposed for adjusting for unmet need.

The *first* involves a demonstration that the use of services among most deprived areas is less than one would expect relative to an independent measure of need (and an independent measure of deprivation). The problem in this case is that there is no obvious independent measure of need and all possible measures of deprivation have been included in the model. An alternative is to use the 'spline' regression technique, where another variable or, for example, the square of an already included variable is defined for only the most deprived segment (the 'spline') of the population. The issue is to establish whether there are any patterns in the residuals for which such an approach might be appropriate

A radical interpretation of the unmet need approach would be to argue that all variables that enter with the 'wrong' sign in the initial models (using a stepwise procedure) are in fact indicators that are 'controlling' for 'unmet need'. For example, in the present exercise the initial model for the cost variable in the Ordinary Least Squares run includes Households with 3 census deprivation measures with a highly significant but negative coefficient (see Annex IV and V). On this basis the correct

³Although this did not appear to be the case for an analysis carried out by two of the proposers of the utilisation of children's services in Northern Ireland,

model is the full model (after a stepwise procedure), and the most appropriate coefficients are those that are in the 'right' direction in that model. This was not seen as acceptable to the Local Authority representatives.

A *second* approach to identifying the presence and likely extent of unmet need involves arguing that the average value of the slopes relating cost to need obtained from the results of the model within each authority is not the best for the purposes of setting allocations, but that instead the average of the slopes in the most 'progressive' authorities (those where the gradient from least deprived areas to the most deprived areas is the steepest) should be used. The procedures followed here for examining the possibility of excluding outliers are a less explicit version of that approach. The problem is the same; there is no theoretical justification for any of the exclusions proposed.

None of these approaches are without methodological or conceptual difficulties and will be applied in this context with caution (see also Stone, 2005). It is particularly difficult that there is no independent survey measure of children in need⁴ Nevertheless, various attempts along these lines been made in section VII.

III. DATA SOURCES AND APPROACH

III.1 Choice of level of analysis

Standard spending assessments were based upon correlational and regression analysis at Local Authority level. At the time of the 1996 review the Department accepted that that approach was flawed because of the difficulty of interpreting correlations at that (aggregated) level. This is known as the ecological fallacy and is illustrated in Figure 1. In this example there are three local authorities. The numbers in the diagram refer to small areas (wards) within each authority. Needs are measured using Census or similar data. The pattern of expenditure responses of each authority to variations in needs within their authority are roughly similar, as shown by the slopes of the regression lines for each authority. However, authority LA1 devotes a higher level of resources to the services than LA2, which in turn devotes more than LA3. The *average* needs and costs of each authority are indicated by the black circles. If these are used in a regression, the thick regression line SS may result. This line bears no relation to actual responses to needs within Local Authorities, and is mainly determined by variations in expenditure policy *between* Local Authorities.

If phenomena of this sort exist, the use of aggregate local authority expenditure data in a regression analysis may be principally capturing historical spending variations between Local Authorities rather than genuine responses to needs. If we are searching for some "standard" response to needs, we should be seeking to identify the individual slopes of the sort LA1, LA2 and LA3. The government then has to select a particular slope as the "standard"; and the assumption is that the national average of individual authority slopes should be favoured. As can be seen from the diagram, this is most emphatically *not* achieved by using aggregate data. Instead, it is necessary to identify the average of the slopes found *within* local authorities.

⁴ Although using population based survey measures to supplement routine administrative data is always problematic when considering deprived sections of the population.

The commissioning of the review of the potential use of multilevel models for the Standard Spending Assessment by the DETR indicates that some of these criticisms are acknowledged to have *prima facie* validity. In particular, it is recognised that it is important to incorporate more sensitive measures of workload closer to the field.

Figure 1 - The 'ecological fallacy' explained

Expenditure

"Need"

For this reason, although there are authority level data on teenage pregnancy, truancy, juvenile offending, and infant mortality; and health authority data on use of mental health services and, to a limited extent, on substance addiction which might well account for the differences between small areas as well as between authorities, the argument is that some, perhaps most, of the correlation between these data and authority level expenditure is due to factors unrelated to needs. If it were possible to obtain data on those factors at small areas level then we would certainly recommend that they should be considered for the small area analysis; but this is only true for a small number of them. Equally, although there are some factors that have been identified in the literature as accounting for some of the differences in the take-up of children's services in the field, they are not amenable to (routine) measurement at either level.

III.2 Standard data sources available at the Small Area level

For the purposes of small area analyses, there are two main types of data are required: data on service activity; and data on the characteristics of small areas that may give rise to the need for services.

III.2.1 Activity data

Data on the volume of services supplied to individuals and small areas are often collected directly from local authorities by projects developing allocation formulae. However, in this case the DH and DfES have (since 2001) been conducting the biennial Children in Need Census - a survey covering ALL provision paid for on

behalf of children in need, whoever provided the service, over one week - whether directly by the Local Authority or by the private or voluntary sector under commissioning arrangements. Returns therefore had to be made by these other agencies to the Social Services to ensure that all activity was accounted for. The census records considerable detail of the services provided to each client, so that it is easy to distinguish between Children Looked after and Children Supported Independently or in Families. Out of the 150 Local Authorities, there were no returns from four of them, and five others had to be dropped because of poor data quality or because they were too small.

Although the census provides a detailed snapshot of all clients in a single week, it only contains limited information on a young person's care history. A separate set of central returns, the annual form 903 submissions, record the separate episodes of care over a year for children who are being looked after.

III.2.2 Data on potential need drivers

At present there are three main sources of small area data on the factors that may influence the need for services: the decennial population census; annual summaries of the numbers in receipt of state benefits, such as income support, working family tax credit and disability allowances, and the various dimensions of the Index of Multiple Deprivation.

Census Data 2001

All the data for 2001 has now been released. The current set of Standard Tables tends to use adults and households as its bases, but a new set of Theme tables provides more detailed information on the numbers of children in different household configurations and social circumstances.

Benefits and Tax Credit Data - Claimants counts

Samples of claims for most forms of benefits are extracted on a regular basis for the purpose of providing statistical summaries. The original claims are postcoded and up-to-date counts are released at geographical areas down to the level of wards (and postcode districts). Some of the counts specifically refer to children, such as children in lone parent premium claimant households, children in income support households and children in working family tax benefit households.

Index of Multiple Deprivation

Although the present allocation formula project does not have the resources to translate material such as education and crime data to suitable base for small area modelling, this work has been undertaken by the team developing the Indices of Multiple Deprivation (IMD) for 2004. Both the overall and domain scores of the IMD are considered as possible need drivers in the modelling.

There are a number of other sources that might be relevant for the present purposes:

DfES and DH Statistics

Hospital episode statistics are available for small geographical areas, but, as yet, there is little other national DoH material at such a low level. Most data collected by the DfES is aggregated to the catchment areas of schools and it would be a considerable and imprecise exercise to attribute these to smaller areas.

National Surveys

Several national surveys have the capacity to be used to provide limited information on people in receipt of services, and more widely, in conjunction with surveys of clients, on the proportion of people not receiving services. Surveys that cover topics relating the present exercise include:

- The General Household Survey (surveys of 17,000 households annually except 1997-98)
- The Health Survey for England has been carried out annually since 1993
- The Housing Condition Survey

However, sample sizes of all these surveys are too small to enable direct attribution of the results to sufficiently small areas to use in the modelling. They have more potential in modelling the relation between individual and household characteristics and reported service use - especially when a sample of non-clients from these surveys can be matched to a sample of clients from social services data.

The variables finally considered as possible candidates for a resource allocation formula - chosen from a much larger pool of variables - are shown in Annex I.

III.3 Possible approaches to Small Area analyses

The tender specification, quite rightly, excluded regression of past expenditure or service receipt at local level; it suggested that options for the revised formula should be based upon analyses of individual data and, if appropriate, small area analysis. There were two possible approaches to collecting the small area data: a small area analysis based on Children In Need surveys; and a small area analysis based on a cross-sectional download of records from Local Authorities combined with estimates of time spent on different categories of case.

III.3.1 A small area analysis based on CIN 2003

The 1996 'York' formula for Children's Social Services was based on a small area analysis at electoral ward level. One possibility here would be to use the data collected in the Children in Need Censuses over the last three years. These data are available at postcode district level. This was in fact the main vehicle for analysis and is considered in detail in section IV. An alternative was to use ward codes for comparison with previous formulae and this is discussed in Section V.

III.3.2 A Small Area analysis based on a download of clients

The approach used by the York team in 1995/96 was to take a cross-sectional download of individual data from Local Authority computer systems classified into six categories of case (Children Looked After by the Local Authority, those in Foster Care, Children on the Child Protection Register, Children with Disabilities, Other). Estimates of the time spent on each category of case were based on a separate analysis of the activities (classified into meeting with clients, telephones, court appearances, writing up reports, etc.) in a representative cross-section of case files and interviews with social workers about the average amount of time spent on each specific type of task.

There is no need to repeat such a survey of social workers in order to estimate the cost of services to clients as the CiN Census contains these details. However, there is an argument for carrying-out a survey of clients, or their proxies, in order to get household and other socio-economic details that are *not* recorded on the CiN Census.

III.4 A possible survey of individual clients

The project proposal considered the merits and disadvantages of attempting a survey of clients. One of our main concerns with approaching clients directly is that because of the concerns about confidentiality any final sample would be very biased. We concluded that because of economies of scale and because of the importance of obtaining reasonable quality data, the only feasible way to carry out this survey would be to approach social workers - and the project budget would limit the survey to a sample of local authorities. The question of designing a suitable sample was discussed early on in the project, when it was agreed that we need to cover rural and urban areas and areas with large and small numbers of ethnic minorities. It was also envisaged that it might be necessary to further stratify according to whether a Local Authority had a high or low proportion of children with physical and learning disabilities. There are therefore four - possibly eight - categories of local authorities

Again, the possible approach to sampling was discussed during the tendering and in the initial stages of the project. The survey planning was eventually discontinued when we realised that in order to meet the reporting deadline, our survey would have had to be carried out at during the phase of preparations for data collection for CIN 2005 Census and this was seen as inappropriate both practically and in terms of the impact upon Local Authorities.

III.5 Agreed final approaches

The purpose of this exercise was to present options for the Relative Needs formula for Children's Social Services to replace the formula developed in 1996. The original brief involved a small area analysis and an individual survey. For a variety of reasons the latter was not possible, especially given the constraints imposed by the overlap with CIN 2005. The final proposal was to explore the following options

- ▶ the national CIN 2003 data at postcode district level (section IV)
- data from a selected number of Local Authorities at the synthetic ward level

- individual level analysis of CIN 2003 data with socio-economic information attributed from the postcode district level⁵
- ▶ combination of individual level CIN 2003 with GHS or HSE data
- > possible ways of adjusting for Unmet Need

The analysis has to be multi-variate to separate out the effects of different sociodemographic characteristics of individual children, the characteristics of the social services provision and the characteristics of the area.

It was also agreed that model search would be restricted to variables with positive coefficients - i.e. those in the expected direction - and that any powerful variables with a potentially counter intuitive effect would be considered as part of the discussion of unmet need.

IV ANALYSIS OF CIN 2003:

IV.1 The Data Set

The CIN 2003 Census is the third in a series that started in 2000 and gives a detailed record of the clients of family and children's social services for a week in February 2003. The 2003 census is the first in the series to collect information on all clients rather than a sample. The data set holds details on 378,049 clients in 146 local authorities. The information on each client includes:

- ethnicity
- religion
- age
- sex
- primary need code
- postcode district of residence (or postcode district of pre-care address for children being looked after)
- a series of codes indicating any special needs that may account for the child being known to social services
- the daily cost of care for the census week
- types of workers and units providing services to the child
- details of any placements, including respite care, occurring on any of the days of the census week.

The cost data is extensive including the costs of social worker input, day care and management overheads, as well as the costs of placements. All costs are local.

The basic characteristics of the clients covered by the 2003 CIN Census are shown in Tables 4 to 6. Boys predominate throughout the age range but especially in the older age groups (Table 4). Only just over 70% are clients are classified as white; and although another 11% have ethnic group Not Stated, over 15% of clients are Asian, Asian British, Black or Black British or Mixed which is approximately double their representation in the overall population (Table 5).

⁵ In addition, it was proposed that specific analyses of the same kind will be carried out for children from ethnic minorities and other sub-groups that can be identified; as the main analyses were judged unsuccessful, this was not pursued.

Age	Fema	ıle	Male		Total	
	Ν	%	Ν	%	Ν	%
0-4	43917	46.30	50931	53.70	94848	100
5-9	38797	43.74	49907	56.26	88704	100
10-14	44448	43.39	57981	56.61	102429	100
15-19	35501	42.03	48960	57.97	84461	100
All ages	162663	43.91	207779	56.09	370442	100

Table 4 - Age and Sex of Clients in CIN 2003 Census

Table 5 - Ethnicity of Clients in CIN 2003 Census

Ethnic group (summary)	Ν	%
Asian or Asian British	16847	4.46
Black or Black British	24969	6.60
Mixed	16670	4.41
Not Stated	40489	10.71
Other ethnic groups	10783	2.85
White	268291	70.97
Total	378049	100.00

For just over four-fifths of the clients on the register, there was no funded activity during the census week (Table 6); foster care constituted nearly half of the funded activity; the net largest component was residential home.

Main costed care component in census week	N	%
No regular funded care	303001	80.15
Adoption allowances	5731	1.52
Section 17 payments	3423	0.91
Section 24 payments	1556	0.41
Foster care	36905	9.76
other payments	9859	2.61
payments while placed for adoption	1545	0.41
Residence orders	3812	1.01
Residential home	12217	3.23
Total	378049	100.00

Table 6 - Main Costed Care Components for Clients in CIN 2003 Census

This contrast is important. Thus, although only about one sixth of all those 'on the books' were Being Looked After, with the remainder Supported in Families or Independently, nearly all those Being Looked After were active cases - in the sense that there had been some action by a social worker or a payment during the census week - compared to only just over half of the others (see Box 2).

In the "Children in Need" census week, there were 381,500 Children in Need known to Local Authorities as requiring some form of Social Services provision, or about 2,500 per local authority. 17% of these Children in Need were Children Looked After (64,000), and the remaining 83%, nearly 320,000 children, were Children Supported in Families or Independently (CSF/I).

During the census week 231,500 children had active work undertaken on their behalf by Social Services or received some payment from their authority, for example in connection with residential, fostering or adoption placement. Of these 231,500 children, 59,000 children were Children Looked after and the remaining 172,500 were children supported in their families or independently.

The proportion of children receiving a service in the week was much higher for Children Looked After (92%) than children supported in their families or independently (54%). Although there are several caveats in the report, the figures suggest that each of the 150 Local Authority Social Services Children and Families teams expend resources on an average of about 1,500 children per week.

The Children in Need census asked for the activity on children to be allocated according to three main categories (intake/referral, initial and ongoing work) which approximate to categories in the "Framework for the Assessment of Children in Need and their Families (Department of Health et al, 2000)". The breakdown in Table 7 shows that, averaged out over the children in question, intake/referral activity amounts to about 1 hour per week per child, rising to 1.9 hours per week for initial work and 3.8 hours per week for ongoing work. The averages for Children Looked After are consistently higher than for children supported in their families or independently.

	Intake/Referral Work	Initial Work	Ongoing Work
Children Looked After	1.2	2.5	5.3
Children Supported in Families or	1.0	1.8	3.3
Independently			
Total costs	1.0	1.9	3.8

 Table 7 - Average hours of work per child receiving a service based on a sample week in

 February 2000 (England, Averages)

These figures are estimates based upon the actual figures received from 137 Local Authorities. Figures may not add due to rounding. A child may appear in more than one category during the week.

Altogether it is clear that the Being Looked After category is very different; and could be treated separately. But, because of the obvious possibilities of substitution between foster care and residential care, the approach agreed with the Department was to include *all* categories of care in the cost variable, and to separately estimate an adjustment for foster costs (see separate report).

IV.2 Homogeneity and Heterogeneity

In order to conduct small area modelling, each client on the CiN Census has to be linked to a geographical location. The most detailed geographical identifier on the CiN database is the postcode district (the first part of the postcode). These postcode districts will be the basis for incorporating socio-economic data as needs drivers - both from the 2001 Census and other sources.

The size of the postcode districts was an initial concern because, in using the small area analysis approach, it has always been presumed that the smaller the area the better, in order that the characteristics of the area are as homogenous as possible thereby reducing the risk of the ecological fallacy (that an association observed at the areas level does not reflect a 'real' relationship at the individual or household level). Prior to receipt of the CIN Census data we had intended to conduct the small area modelling at ward (or synthetic ward) level; and, if necessary, attribute ward level values to individual client data in order to carry out individual level modelling. Because the only geographic identifier in the CIN data set is the postcode district (the first part of the postcode) of residence (or pre-care residence for looked after children), this would have required obtaining ward codes from LAs and matching ward codes to CIN records. This did not prove possible (see Annex I.1). The problem is obtaining ward codes from LAs in the first place. Ward information was obtained from some LAs (see section V below), though this will mainly be as a check on the bulk of the analyses, which has been conducted at postcode district level.

As postcode districts generally refer to larger areas and populations than electoral wards we were concerned that their possible socio-economic diversity might undermine the modelling (let alone to use as the basis for attributing characteristics to individuals). To test for possible problems we carried out preliminary analyses of the relative social homogeneity of wards and postcode districts using output area data from the 2001 population census (see Annex I.2).

To test social heterogeneity of wards and postcode districts, 8 need indicators for census output areas were obtained. Although these indicators were chosen for ease of computation at output area level, several of them have in fact appeared in previous formulae or been strong candidates for inclusion. We compute the standard deviation in the values of these indicators for the output areas within each ward and postcode district. We then averaged these standard deviations for the wards and postcodes districts in each type of authority. We expected the larger populations (and areas) of postcode districts, compared to wards, to result in their being more heterogeneous. An example is given in Table 8 for unitary authorities (tables for each class of authority are in the Annex I.2). Across all classes of authority, with the single exception of the proportion of ethnic minorities, postcode districts are in general *more* homogenous than synthetic wards.

Unitary authorities					
Number of wards = 1058	Mean ward	SD within	SD within		
Number of postcode districts =406	Value	Wards	PC districts		
Percentage non-white	5.80%	4.00%	5.05%		
Percent working age with LLTI	8.19%	1.05%	1.04%		
Percent 16-74 with no qualifications	29.10%	2.72%	2.70%		
Percent households in flats	14.56%	7.35%	6.96%		
Percent no car households	23.94%	3.93%	4.06%		
Percent households in owner occupation	71.78%	6.11%	5.00%		
Percent LP households with kids	6.51%	1.93%	1.65%		
Percent households, all adults unemployed with kids	4.78%	2.23%	1.98%		

 Table 8 - Within ward and postcode district variability for unitary authorities

Clearly the exception is important and, given the large size of the CIN 2003 data set we propose to address this in two ways:

- First, through a variety of sub-group analyses in order to see whether the selection of postcode districts that are more homogeneous in terms of ethnic minorities gives a different result (see section VIII.4 for findings)
- Second, through a comparison with analysis at the level of synthetic electoral wards from a smaller set of Local Authorities who agree to give us the original data where the whole postcode will usually have been recorded.

Analyses have been carried out using all postcode districts and a subset of postcode districts that are most homogenous with respect to the proportion of ethnic minorities.

IV.3 Dependent variables

The modelling mostly uses three variables derived from the CIN data set⁶ as dependents:

- the number of clients originating from a postcode district per thousand inhabitants aged 0-19 in the district
- two interpretations of the cost of providing services to clients originating from a postcode district per thousand inhabitants aged 0-19 in the district

The two cost variables are preferred because they more accurately reflect the workload of social services. The first version of the cost variable uses the costs per child as reported in the CIN census - deflated by the area cost adjustment for children's social services. The second takes the same costs, and deflates them as before, but then computes national average costs for service combinations - giving us an average for, say, children who attend day care and have some form of domiciliary support; and an average for someone in supported living etc. In this way unit costs are computed for the 50 distinct care combinations that occur in the data set. These national average unit costs are then assigned to all clients receiving the care combinations and the costs summed for each postcode district as before.

There are, of course, several factors that affect costs in different Local Authorities for example, regional price variations, differences in workforce and salaries, differences in patterns of placements for looked after children. But one of the advantages of carrying out analysis within a multi-level analysis framework is that those variations - which are all at Local authority level or above - are factored out.

IV.4 Supply variables

The costs of children's social services within an authority can also be affected by 'supply' factors such as the relative likelihood of the child being referred by different sources, secondly the pattern of services used by different Area Offices within an Authority and thirdly the level and type of effort of social workers. It was therefore agreed that we would develop measures of access and supply that should allow us to test whether there are effects due to proximity to services or service substitution.

⁶ See Annex I for a description of the data set.

Children can be referred to social services by the parents or by other professionals or there could be self-referral. In principle, therefore, there might be substitution effects between different types of services at all geographical levels, and in particular at the Area Office level. Initially, therefore, we extracted nearly all of the addresses of the area offices but then took the view that there was no particular point in contacting them (or the Finance Departments) to find out the patterns of staffing and costings for those Area Offices for three reasons:

- accounting practices in ascribing costs and even staffing costs to those offices will be variable;
- it seems rather unlikely that will be a 'supply' effect at area or patch level determined by an *absolute* lack of staff or resources at a Local Area Office in other words if a Local Authority is made aware of a child in difficulties, they will ensure that one of the Area Offices (if there is more than one) does something (we realise not necessarily the 'right' thing see below)
- whilst there might well be a supply effect of that kind at Authority level which would influence overall expenditure an absolute lack of resources leading to a decision not to put a child in residential home for example it is unlikely that this would affect an Area Office except by chance (it happens to be one of the children on their list who needs residential care at the end of the financial year), and of course Authority level effects are, through the techniques adopted, taken out of the analysis relating needs variables to expenditure on children's services.

Instead, we decided that the best surrogate for a possible within- Authority 'supply' variable that could reflect both the likelihood of a child being referred by the parents (or even self referred) in the first place and possibly also the level and type of effort by social workers, would be the accessibility of the catchment population of children to the different area offices. This has been captured by the mean distance between the centroid of each postcode district and the nearest area office for a social services authority. It has been calculated from Census populations and the postcodes of the area offices. On the whole, our a priori was that there would not be an effect.

IV.5 Structure of data and statistical techniques

Hierarchies and levels

Given that there are 141 authorities with usable data and, potentially, nearly 500 patches, the most appropriate method of analysis is multi-level modelling with either three levels (postcode district, patch and Authority) or two levels (postcode district and Authority). However, given the relative lack of familiarity of many Local Authority officials with that method, when a model has been developed using that method, it has also been re-estimated using Ordinary Least Squares and including dummy variables for the Local Authorities.

Functional forms

In principle, the most appropriate specification of the model depends on the distributions of all the variables in the model. There is a theoretical question here - whether it is possible to apply an estimated non-linear formula directly to Local Authority level data. In principle, one could apply a non-linear formula at any level; but it becomes very messy to compute and if done uncritically, the non-linearities may

lead to less than credible allocations at the extremes of the range. We have therefore given preference to a linear formula but some of the utilisation data in particular may have distributions that will not model satisfactorily without transformation.

Endogeneity

If the supply variables are endogenous in the data - that is, if there is evidence of reverse 'causation' between the dependent variable and supply variables - this will involve two stage least squares.

Criteria for assessing statistical appropriateness of models

Models that are plausible in terms of the nature and sign of the variables are examined for their statistical properties. This includes what is called a specification test and the size of their R-squared statistic.

Specification tests are intended to test whether or not there are any variables that have been omitted from the model; and whether the functional form is appropriate. No one statistical test covers both these issues comprehensively. The one used here is the original Ramsey Reset test which involves including the square of the predicted value from the original model as an independent variable. It was emphasised that neither of these specification tests should be treated as the sole or unique criterion. Indeed there are several examples of models which fail this criterion being used successfully for resource allocation.

The R squared value measures the proportion of variance in the dependent variable that has been accounted for by the variables that have been included in the model⁷. Once again, it was emphasised that this value should not be treated as the sole or unique criterion and it could be argued that at least as much attention should be given to the plausibility of the variables.

IV.6 Initial exploratory analysis

The basis for the small area analysis is CIN 2003. There are 380,000 individual children records in the national data set, and these combine to 2,210 postcode districts. There were usable data only for 141 local authorities, with 4 of the authorities not making returns and inadequate data from 5 of the authorities (either because they were too small or because the data were of poor quality). These were combined with needs variables including education data (KS2 examination results attributed to postcode districts) and the access variable computed from the postcode distribution of clients relative to the location of social work offices for children's and young person's services.

A variety of exploratory analyses have been carried out. These include examining:

- > the distributions of the dependent variables and their implications for analysis;
- correlations and inter-correlations.

⁷ Note that, because they were on a different scale it was not appropriate to compare the R squared where the dependent was unlogged with one where the dependent was logged. The actual and predicted values in the log runs will accordingly be unlogged and compared.

IV.6.1 Distributions of the dependent variables

Across all 141 authorities, the cost variable has substantial skewness (i.e. the distribution slopes to one side) and kurtosis (i.e. the distribution is more pointed or flatter than the classic bell curve) with the distributional statistic at least 75 times the standard error in both cases. The same statistics for the transformed variables (logged or square root), although not that badly distributed, are also at least 15 times their standard error. For example, there are ten postcode districts with costs less than £100 and 18 with more than £15,000. With these values it is unlikely that one will achieve a well-specified model (i.e. a model where, at least in statistical terms, there are no omitted variables and no measurement error) without excluding some outliers. Whilst such exclusions can be justified statistically - because of the poor distributions - there is rarely ever a theoretical reason to exclude them (unless one suspects a mistake in the data) so there is always a sense of arbitrariness.

In contrast, if we look at the skewness and kurtosis *within* each authority (Annex II), the cost variable appears to be relatively well-behaved, with only a dozen authorities having a value for skewness more than three times the standard error, and 31 authorities having a kurtosis statistic more than three times its standard error. This arises because the mean values of the cost variables are very different between Local Authorities. All except two of the authorities that have a significantly large skewness statistic also have a significantly large kurtosis statistics. At the same time, the relatively well-behaved distributions of the cost variable within authorities compared to the overall skewness and kurtosis when all 141 authorities are considered together suggests that multi-level modelling may lead to a better specified model as that modelling framework is based on the better behaved distributions of the costs per capita between each set of small area (postcode districts) of the 141 authorities. On this basis it did not seem appropriate to experiment with excluding outliers.

IV.6.2 Correlations and inter-correlations

The full list of independent variables is given in Annex III. Several of the independent variables are correlated more than 0.5 with the cost variables, which suggests that there will be a powerful predictive model. Some of the inter-correlations between the independent variables are very high (see Table 9).

	Α	В	С	D	Е	F	G	Н	Ι
NEWDENS	1.000	-0.313	0.404	0.469	0.469	0.375	0.396	0.357	0.173
MINDIST			-	-	-	-	-	-	-
	-0.313	1.000	0.102	0.137	0.145	0.124	0.118	0.136	0.060
INCSUP	0.404	-0.102	1.000	0.952	0.962	0.841	0.854	0.758	0.767
Lone parents on inc									
support	0.469	-0.137	0.952	1.000	0.978	0.804	0.817	0.762	0.712
Children in IS hholds	0.469	-0.145	0.962	0.978	1.000	0.817	0.831	0.788	0.709
Adults on job seekers									
allowance	0.375	-0.124	0.841	0.804	0.817	1.000	0.990	0.869	0.761
Adults – income based									
JSA	0.396	-0.118	0.854	0.817	0.831	0.990	1.000	0.875	0.741
Children in income based									
JSA hholds	0.357	-0.136	0.758	0.762	0.788	0.869	0.875	1.000	0.642
Prop of econ act 16-24yr									
olds unemployed	0.173	-0.060	0.767	0.712	0.709	0.761	0.741	0.642	1.000

Table 9 - Correlations between Density and Other Independent Variables

Note: the significance level has been omitted because all correlations are significant at better than 0.001 Column Titles: A - NEWDENS; B - MINDIST; C -INCSUP; D - Lone parents on income support; E -Children in IS hholds; F - Adults on job seekers allowance; G - Adults - inc based JSA; H - Children in inc based JSA hholds; I - Prop of econ act 16-24yr olds unemployed

There was a specific interest in the role of density. This is not a new issue, Annex IV is the summary of a technical paper which explored the relationship between population density, the other variables in the previous (1996) model and need for children's social services, which suggested that density was playing a crucial but difficult to understand role. In the current analysis, however, the correlations between density and the dependent variables (Table 10) are not very strong (about 0.275 (or accounting for only about 8% of joint variance) compared to the values for the other variables entered into the equations. It is not the high inter-correlations between density and other needs variables that will stop density entering the equations; it is because it is not correlated with the dependent in the first place. Nevertheless, as density appears in the current formula, it was entered in some initial runs.

	New	Min.	Inco	-	Lone parent		Children in IS
	Density	Distance	Supp	ort	income supp	port	house-holds
NDEP2	0.275	-0.244	().606	().629	0.629
UNITCST2	0.233	-0.170	0).583	().586	0.597
	Adults on	Adul	ts -	Children in		Pr	op of econ act
	job seekers	s income	based	inc	ome based	-	16-24yr olds
	allowance	JSA	4	JSA	house-holds	ī	unemployed
NDEP2	0.443	0.46	53		0.482		0.419
UNITCST2	0.462	0.47	72		0.468		0.456

 Table 10 - Correlations between density and dependent variables

 (Postcode District Level)

IV.7 Initial multivariate analysis

A variety of preliminary analyses using OLS have been carried out experimenting with different functional forms. The following variants have been attempted:

- Logarithm of dependent only
- Logarithm of both sides

- Square root of dependent
- Linear dependent and square of significant variables
- > Selected interaction terms in the linear model; and
- > Re-run with postcode districts assigned to only one local authority

Audit trails for these exist. OLS models with a transformed dependent variable (either logarithm or square root) perform better on purely statistical grounds than those using the untransformed dependent: the square root model is in fact the only specified model. However, the variables that are included with significant coefficients in the model with untransformed dependent are the same as those included with the square root model.

Initial runs showed that the main problem remains the lack of specification of the model, indicating omitted variables or the wrong functional form. This was a surprise because of the high level of R squared obtained in all models.

In order to account for this and/or try and explain this away, we searched for possible outliers. Examples of analyses carried out are appended to this report. In these, we have been concentrating on high value residuals and on authorities that have counter-intuitive correlations between postcode district activity and probable need drivers. Some of these results are due to questionable data for single postcode districts; some to problems with the entire data set from an LA; and some to the form of the relation between possible need drivers.

On this basis we have examined the possibility of excluding outliers from the analysis, on the grounds that they might account for the difference between the specification of the model with untransformed and square root dependents. A variety of arbitrary exclusions of local authorities and of postcode districts have been tried; in particular, runs have been attempted excluding 173 postcode districts, but none of the runs are specified. But because there was no clear evidence about the quality of the raw data to exclude any of the postcode districts and the statistical data did not show any clear advantage in excluding any of them, none have been dropped.

Despite a variety of exclusions, therefore, attempts with different combinations of variables, runs estimated in OLS with either individual costs or national cost weights with a linear dependent remain unspecified, whilst those with a square root dependent are specified.

An alternative approach was to use multi-level modelling in which the clustering of postcode districts within Local Authorities is directly incorporated into the structure of the analysis. Effectively, the software searches for a 'gradient' (in inverted commas because in multi-dimensional space) which is closest to the gradients *within* each Local Authority. Given we have shown that the skewness and kurtosis when calculated *within* Local Authorities is considerably smaller than when calculated *across all* Local Authorities, this is likely to lead to a better specified. In fact, in the multi-level modelling runs, both linear dependent variables including the National Unit Cost dependents, are well-specified and the square root run just unspecified.

Full results are attached as Annex V, providing a variety of options. In all three OLS options, R squareds are above 60%, higher than the typical values of 45% obtained in the 1996 modelling,

IV.8 Initial recommended set of options

The pattern of variables appearing in the different runs (see Table 11) shows that, overall, the multi-level models are more consistent in terms of the variables included. The 'children without good health' variable appears in five of the six, the combined adult income support variables in four of the six. A fuller set of analysis is given in Annex VI.

It should be noted that, in all runs, the 'supply' variable (mindist) is always negative implying that those further away from a service provision office use the services less. Given that this effect remained negative (and statistically significant in all except the individual cost OLS run), there was the issue of how to treat that variable: either as a control, in which case its coefficient should be ignored, or as part of the model.

Variable		inary Le Squares	east	Multi	-Level	model
	A	В	С	A	В	С
Children in lone parent households	\checkmark	\checkmark	×	×	\checkmark	×
Lone parents on income support	\checkmark	×	×	\checkmark	\checkmark	×
Children not in good health	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
Adults on income support or income	×	\checkmark	\checkmark	\checkmark	x	\checkmark
based JSA						
Children in social rented households	x	×	\checkmark	×	x	×
Children with limiting long-term	×	×	\checkmark	×	×	×
illness						
Children in black ethnic groups	x	×	\checkmark	\checkmark	x	\checkmark
Children in mixed ethnic groups	×	×	×	\checkmark	×	×
Children in income support/income	x	×	×	×	x	\checkmark
based JSA households						

Table 11 - Independent Variables appearing in Different Options (with min. dist.)

Column headings

A: Costs of each individual Case in CIN 2003

B: Square Root of Cost A

C: Numbers weighted by National unit Costs

IV.9 Runs without Minimum Distance

The preliminary results presented in May 2005 included the 'supply' variable minimum distance to an area office; on request, we were asked to exclude the minimum distance variable but include population density.

Accordingly, the equations were re-estimated excluding minimum distance *but including density*. The three dependents considered are client numbers, client numbers weighted by the national cost for the type of case and actual local cost (deflated by the area cost adjustment). The models were estimated using both Ordinary Least Squares and Multi-Level Modelling. Unfortunately it was later discovered that the density variable had been incorrectly calculated and so the full report on these results is included in Annex V. When the correct density variable was included, it was not statistically significant and gave the following results (Table 12).

Table 12 - Recommended Model from CiN 2003 Small Area Analysis

	Estimate	St. Error (U)	Prev. Estimate
(Constant)	278.4	325.7	178.7
Children without good health	11890	4579	11370
Adults on Income Support/JSA	15790	3298	22420
Children of Income Support/JSA claimants	5947	1864	5328
Children in black ethnic groups	5378	1247	4724

This was the recommended model for resource allocation for the need/ deprivation component:

- the proportion of children without good health;
- the proportion of income support/income-based jobseeker's allowance claimants aged 18 to 64 years;
- the proportion of children of income support/income-based jobseeker's allowance claimants; and
- the proportion of children in black ethnic groups.

V. SMALL AREA ANALYSIS OF WARD LEVEL DATA FROM SELECTED AUTHORITIES

The previous English children and families social services allocation formula was computed using small area modelling methods with data at electoral ward level - with some amalgamation of rural wards with small populations. The only geographical identifier on the CIN 2003 data set was the postcode district and it proved impossible to obtain ward codes for sufficient of the client lists held by LAs to make this a viable approach. Nevertheless, in order to confirm that similar results would be obtained at ward level we have attempted to obtain ward codes matching the CIN dataset from a sample of the local authorities that supplied the CIN data to the DH.

Because no conversion from wards to synthetic wards has been released by ONS for 2001 wards, the analysis has been at electoral ward level. Descriptive statistics are given in Annex V. This was seen only as a confirmatory analysis.

The main difficulties in acquiring the data from LAs were that the original CIN files had not been kept, staff had moved, or the authorities were unable to interrogate their version of the central database in order to match their CIN submissions to their local client record systems. These problems particularly applied to London authorities and we only managed to get the ward codes or full postcodes from one inner London and two outer London authorities.

In the event, twenty-four authorities provided usable files of ward codes that could be matched to the CIN2003 data set. Some of the matching is approximate as the local authorities do not have the client ID codes that are used in the central version of the CIN data set and the central version does not retain the codes used by the local authorities when they supplied the data. Hence ward codes have been matched into the file using data such as the date of birth of the child, the date of first referral, and client sex.

The total number of wards in the data from these LAs is 2014. Once again the distribution of the dependent variable across all wards in this subset of Local Authorities is poor (Annex VI, Table VI.1) with a skewness nearly 40 times its standard error (2.086 compared to 0.055) and a kurtosis more than 100 times its standard error (10.675 compared to 0.109); but the distribution within each authority with under half (11) of the authorities having a skewness more than three times its standard error (see Annex VI). Data from two of the authorities (with codes 511 and 820) have a particularly poor distribution

	Unstanda Coeffic		Stand. Coeff.		
	В	Std.	Beta		
		Error			
(Constant)	-574.0	252.9		-2.27	.023
Children in social rented households	3766.8	687.0	.199	5.48	.000
Children not in good health	8770.2	3218.4	.077	2.73	.006
Adults on Job-Seekers Allowance	44850.2	7582.5	.204	5.92	.000
Children in income support/income	6302.6	1588.9	.216	3.97	.000
based JSA households					
Reset Test Statistics	0.0000325	.000	.169	2.47	.014

Table 13 - Ward Level Linear Run with adjusted Cost Dependent

a Dependent Variable: WCDEP2

The Ordinary Least Squares model with the cost variable (computed as above) leads to a reasonably specified model as in Table 13, with a subset of the variables included in the postcode district runs. We take that as supportive evidence that the two area bases produce similar results.

VI. INDIVIDUAL LEVEL ANALYSIS OF CIN 2003 DATA

VI.1 Analyses using CiN Census data and attributed characteristics

Because the CIN 2003 data set is an individual level data set, we can carry out a proxy individual level analysis (ILA) using potentially all 300,000 children, together with the socio-economic data that have been attached to their postcode district. Clearly this will not provide direct information on the child as had been proposed originally through interviewing the social worker working with each child. However, it has to be remembered that the collection of data from the social workers responsible for the child was itself proxy information and, given potential social worker reluctance -even without CIN 2005 - it would have been difficult to collect information on a large representative sample. Moreover, the sheer size of the sample, even if we restrict the sample to children from postcode districts that are relatively homogenous in respect of the proportion of ethnic minorities, means that the estimates will be much more robust and that many more sub-group analyses can, in principle, be carried out.

The analyses used socio-economic information attributed to individual children based on the postcode district in which they live (Table 16). Although all the independent variables are highly statistically significant, the model is only of very limited explanatory power; always less than 5% R squared whatever combination of variables or functional forms are used⁸. However, given the debate about the relative costs of

⁸ It should be noted that this was a concern of the researchers both during and after the tendering process. First, it should be recognised that, in general one would expect small area analysis to have a higher R squared than any individual analysis. This is because much of the random variation between individuals is 'ironed out' through the aggregation process. Second, the packages received by each child are different and, although there are individual characteristics associated with being in receipt of care, there is far less research about the characteristics that indicate different types of care (see review of literature in section II). This is in contrast to the situation with personal social services for older people, where there only a limited number of packages of care that are relatively well defined and where there is also some differentiation between the package most likely to be received by the young old and the older old. In the latter situation it is plausible to hope for and obtain a high R squared; but

children from different minority ethnic groups, it is interesting to see that relative to the overall average, each of the identified ethnic groups (Asian British, Black British, Other Ethnic Groups) cost less whilst Mixed Ethnic group does cost more.

VI.2 Combination of Individual Level CIN 2003 with HSE data

The analysis of a combination of individual level CiN 2003 with HSE data was originally proposed when individual survey data on clients could have been combined with a national data set on children to explore the factors associated with a child being in receipt of social services. The only possible parallel here would have been to combine a CIN 2003 file with characteristics attributed from postcode districts with a sample from HSE or GHS with individual characteristics. Preliminary analyses showed a very low explanatory power so that the results were only of very limited value and the approach was discontinued.

Table 14 - Results of Individual Level Analysis

(A) Model Summary

Mode	R	Adjusted R	Std. Error of the Estimate	
1	.094	.009	.009	5
2	.139	.019	.019	5

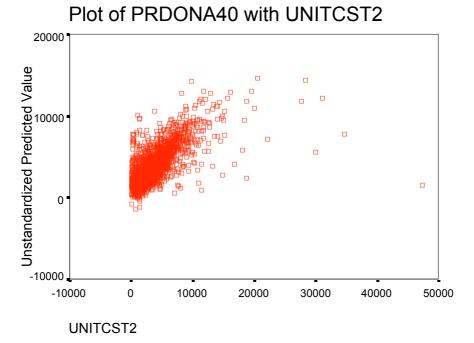
(B) Coefficients

	Unstandardised		Standardized	t	Sig.
В	Std. Error	Beta			
(Constant)	-46.1	6.0		-7.66	.000
NGENDER	20.3	1.8	.019	11.59	.000
RAGEGRP	38.0	.8	.079	47.80	.000
ASANBRIT	-49.2	4.4	019	-11.06	.000
BLCKBRIT	-10.9	4.0	005	-2.75	.006
MIXEDETH	63.0	4.3	.024	14.52	.000
NOTSTATE	-91.6	3.0	053	-30.42	.000
OTHERETH	-56.7	5.5	018	-10.32	.000

a Dependent Variable: COST_TOTAL

VII. POSSIBLE WAYS OF ADJUSTING FOR UNMET NEED

There are several possible ways of approaching unmet need as discussed in section II.4 above. The initial attempts here simply examined how the predicted values are related to the actual values of the dependent variables to see if there is any 'shortfall' in the predictions compared to the actual values. This leads on to two other possible analyses. The first approach ideally appeals to an independent measure of 'need' (in this case for children's social services) and examines whether there are any other variables associated with that independent measure that can be brought into the analysis; in the absence of such an independent measure, the approach would be to see whether there are any candidates for re-including one or other of the variables that

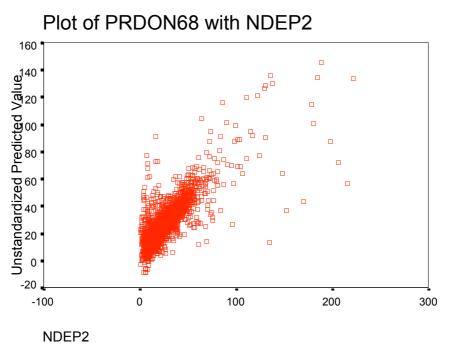

with children, the individual level modelling is almost certain to have a much lower R squared than the small area modelling.

have been excluded during the process of eliminating variables. The second is the socalled variations approach in which a group of authorities is selected where the apparent gradient in the allocation of budget within authority is much steeper than the national average gradient, in order to see whether another model (essentially other sets of variables) are more appropriate.

VII.1 Comparing predicted and actual values

Graphs have been plotted comparing the predicted values at the end of the first stepwise run with the predicted values from runs after eliminating any negative or statistically insignificant variables. The predicted and actual values have also been compared. The former graphs, reassuringly, display an almost perfect straight line confirming that the process of eliminating variables does not substantially change the picture. However, in each case, the latter graphs show that there is an apparent 'shortfall' in that - in high cost (or client number) areas, the predicted values fall short of those actually observed. Other writers have taken this to be evidence of 'unmet need' meaning that the estimated equation is not accounting for high costs among presumed deprived populations or areas.

In order to test this, we have identified the postcode districts that are high cost (or have high numbers). These are listed below each pair of graphs in Annex VII, with an example shown here in Figure 1 and compared with the IMDTOTAL score (Table 15). It is clear that they are not located in any specific region nor are they concentrated amongst the most deprived areas (according to the IMDOTAL score).


Figure 1 - Plots for unit cost dependent

Cases weighted by POPFWT1

LA_ID	PCDIST UN	NITCST2	IMDTOTA	L		
205	DN1	18472.9	92 55	5.95		
214	HU6	15137.9	9 43	3.60		
215	HU1	27733.0)7 62	2.60		
215	HU2	19563.4	13 63	3.98		
215	HU3	15254.4	15 57	7.17		
306	M11	15654.1	.9 71	L.05		
306	М7	22115.9	0 49	9.58		
316	L20	29963.6	50 51	L.79		
407	CV7	47370.4	17 16	5.43		
509	LE1	28423.3	39 58	8.61		
606	LU2	16864.2	27 16	5.97		
624	PE7	18756.2	20 13	3.70		
704	E9	34702.4	43	3.94		
705	NW10	15015.4	32	2.73		
707	W10	16110.1	.2 43	3.05		
713	NW6	31131.7	78 30	0.53		
713	W10	20607.9	43	3.05		
720	SE19	18054.9	0 26	5.01		
909	BS2	18791.9	94 50	0.09		
913	PL1	20033.4	41 47	7.28		
Number of ca	ses read:	20	Number	of cases	listed:	20

Table 15 - Local authority base of postcode districts with high costs

More specifically, given the specific characteristics of children's social services, one would expect that if there were unmet need it would arise at first entry into contact with children's social services, so that the most important graphs to examine are those related to the client-numbers dependent (Figure 2). In this case there does appear to be a concentration in two of the London based Local Authorities, i.e. code numbers 703 and 713 but that, once again, these do not appear to be those parts of those authorities where the deprivation scores are very high. Moreover, whilst those two authorities account for 13 of the 28 cases identified as potential 'shortfalls' in terms of numbers, none of the postcode districts from authority no.703 and only two of the postcode districts from authority code no. 713 appear as potential 'shortfalls' for the other two dependents (Table 16). Similarly, there is only limited consistency in terms of the other two stricts that appear with the three different dependents. On this basis, there is, therefore insufficient evidence to propose any specific adjustment for the observed shortfalls, mainly because they do not appear to be related to deprivation.

Cases weighted by POPFWT1

Table 16 - Local authority base of postcode districts with large numbers of clients

_	PCDIST	NDEP2 IM	DTOTAL				
205	DN1	106.90	55.95				
215	HU1	206.72	62.60				
215	HU2	130.32	63.98				
306	M11	105.13	71.05				
316	L20	152.34	51.79				
404	CV6	169.79	31.27				
407	CV7	135.09	16.43				
509	LE1	198.16	58.61				
703	SE10	129.96	30.68				
703	SE12	110.72	23.69				
703	SE13	222.46	28.78				
703	SE18	135.68	35.35				
703	SE2	137.74	32.82				
703	SE28	130.67	34.51				
703	SE3	122.22	25.45				
703	SE7	185.19	35.01				
703	SE8	188.56	36.41				
704	E9	215.68	43.94				
705	W11	148.09	27.59				
707	W10	116.65	43.05				
712	SW4	110.47	28.21				
712	SW8	103.88	33.44				
713	NW6	180.74	30.53				
713	W10	178.54	43.05				
713	W11	114.83	27.59				
713	W2	102.01	30.55				
909	BS2	124.89	50.09				
913	PL1	101.09	47.28				
Number of	cases r	read: 28	Number of	cases	listed:	28	

VII.2 Residual Analysis

When manual or automated stepwise regression methods are used to develop models, the correlations between possible need drivers may cause variables to be dropped at an early stage when they might be able to make a contribution to the final model. To test for variables that might be reconsidered for the model - and which might correct for any non-linearities - residuals from the recommended model were correlated with the full set of potential need drivers.

The only correlations significant at the 5% level in this exercise are shown in Table 17 (the full set is in Annex VIII) and even these 26 have to be treated with caution as there are 150 correlations so one would expect between 7 and 8 to be statistically significant. If we take the more conservative 1% level, then only 11 are statistically significant; and, of those, only the correlations of children in lone parent households and children in social rented households with the residual from the national unit cost run are positive and so could, in principle, be considered as candidates for this treatment. But as this run is badly mis-specified, this is inappropriate.

		numbers	Raw local cost	National Unit Cost
Mindist	Distance from centroid of postcode district to head office	Neg**	Neg*	Neg**
Ethasn	Proportion of ethnic Asian adults	Neg**	Neg**	Neg**
Ethnw	Proportion of non-white adults	-	Neg*	Neg*
Kethnw	Proportion of children in non-white households			Neg**
Kethasn	Proportion of children in ethnic Asian households	Neg*	Neg**	Neg**
Klonepar	Proportion of children in lone parent households	-	-	Pos*
Ksocrent	Proportion of children in social rented households	-		Pos*
Knocenth	Proportion of children in households without central heating	-	-	Neg*
Unempl1	Proportion of working population unemployed	Neg**	Neg*	Neg*
Ypunemp2	Proportion of young people unemployed			Neg*
Students	Proportion of population that are students	Neg**	Neg**	Neg*
Ypecact	Proportion of young people economically active	Pos*	Pos*	Pos**
Kjsa_f	Children in income based jsa households			Neg*

Key * Statistically significant at conventional 5% level ** Statistically significant at 1% level

VII.3 High Gradient Models

The second subsidiary set of analyses concerns the extent to which there might be a specific group of authorities who are responding more 'aggressively' and possibly more appropriately to needs gradients. This has been examined in two ways based on the range or predicted and actual costs within each Authority (not attached) as follows:

- by comparing the ranges of predicted and actual costs (and numbers) with the minimum in that authority and taking those authorities where that ratio is more than 5
- by comparing the ranges of predicted and actual costs within each authority with the national average range and minimum and taking those authorities where that ratio is more than 2.5 (2.25 for the numbers dependent)

The results are included in Annex IX (including the numbers of postcode districts involved and the local authorities from which they are drawn). The pattern of variables entering the different (partial) models shown in Table 18 is clearly not consistent so that no attempt has been made to pursue this analysis.

		nternal npariso	n	National Compariso			
	Α	В	С	Α	В	С	
Adults on Income Support				Y			
Children without good health	Y						
Children black ethnic groups				Y	Y		
Children with Limiting Long Term Illness				Y			
Children in income support households					Y	Y	
Children in Lone Parent Households	Y	Y					
Lone Parents in Income Support		Y					
Children with LLTI						Y	
Children in poor health						Y	

A - Local Actual Cost; B - National Unit Cost; C - Numbers

VIII RE-ESTIMATING WITH A NEW CLIENT AGE THRESHOLD

This section reports on runs with a new dependent variable where the denominator is the numbers of children 0-17 in the postcode district rather than the number 0-19 in the postcode district. The change in threshold was suggested during the consultation period. The previous threshold of 19 was used because the CiN data set included a substantial number of clients aged between 17 and 19. However, there is a concern that the higher threshold will include large numbers of students in the population denominator for some areas and artificially deflate costs and activity per head of population.

VIII.1 New variables

The effect on the variables is shown in Table 19. The major difference between the new variable and the old variable is that the minimum cost per postcode district is

now 44 rather than 200. The ratio of numbers of 0-19 year olds to the numbers of 0-17 year olds in the postcode district is given by AGEINFLT. This has an average of 1.1116, which is very close to the value you would expect - 20/18 or 1.1111 - if there had been no change in birth rate, neither immigration nor emigration, and no deaths. Even though there obviously have been some deaths, the slightly higher value is to be expected, given that (a) I think the birth rate has been slowly declining (b) immigration of young families.

The effect on the average value of the unit cost is to inflate it by approximately the same factor of 1.1116 (weighting by cost makes a bit of difference but not much; the ratio of nunitc2r:unitc2r is 1.1227).

	Ν	Minimum	Maximum	Mean	Std. Deviation
K0_17R	2210	43.84	33552.05	4675.2003	3535.23217
K0_19R	2210	200.16	36683.15	5171.5362	3905.25522
AGEINFLT	2210	1.03	22.72	1.1116	.22375
NUNITC2R	2210	35.16	62763.22	4155.6803	3838.95950
UNITC2R	2210	32.00	47496.40	3701.5289	3203.51644

 Table 19 - Descriptive Statistics of Age Variables

Nevertheless there clearly are some curious values; there is at least one postcode district that has 22 times as many 0-19 year olds as it has 0-17 year olds. That can obviously only be a student district. The twenty seven postcode districts where the ratio is more than 1.5 are shown in Table 20. It can be seen that all are in well-known university towns and the prize goes to B4 in Birmingham with hardly an under 18 year old in sight but a large number of 18 and 19 year olds. Only four of the 27 postcode districts are in Central London.

under 10					
LA_ID	LAN1	PCDIST	AGEINFLT	UNITC2R	NUNITC2R
107	7 NEWCASTLE UPON TYNE	NE1	2.66	.12	.05
107	7 NEWCASTLE UPON TYNE	NE2	1.91	.91	.53
207	7 SHEFFIELD	S1	3.92	.12	.03
207	7 SHEFFIELD	S10	1.62	2.04	1.40
212	2 LEEDS	LS2	3.57	.33	.10
212	2 LEEDS	LS6	1.72	1.65	1.06
215	5 KINGSTON UPON HULL UA	HU1	2.26	.04	.02
30	6 MANCHESTER	M1	7.23	.21	.03
30	6 MANCHESTER	M14	1.56	2.04	1.45
30	6 MANCHESTER	M15	1.72	.49	.32
31	5 LIVERPOOL	L1	1.92	.14	.08
310	6 LIVERPOOL	L3	1.82	.36	.22
406	6 BIRMINGHAM	В1	2.11	.16	.09
406	6 BIRMINGHAM	B15	2.08	.77	.41
406	6 BIRMINGHAM	В4	22.72	.19	.01
50	7 DERBY UA	DE1	1.56	.44	.31
509	9 LEICESTER UA	LE1	1.50	.21	.15
512	2 NOTTINGHAM UA	NG1	1.70	.13	.09
512	2 NOTTINGHAM UA	NG7	1.56	2.25	1.59
512	2 NOTTINGHAM UA	NG9	1.69	.23	.15
608	3 OXFORDSHIRE	OX1	2.01	1.00	.55
702	2 CAMDEN	WC1E	2.49	.08	.04
702	2 CAMDEN	WC1H	1.61	.38	.26
70	7 KENSINGTON & CHELSEA	W2	1.57	.09	.06
713	3 WESTMINSTER	SW7	2.21	.21	.11
814	4 SOUTHAMPTON UA	SO14	1.51	.89	.65
909	9 BRISTOL UA	BS1	1.99	.17	.10

 Table 20 - Postcode Districts with large numbers of 18 and 19 year olds relative to those under 18

Number of cases read: 27 Number of cases listed: 27

At the same time a new weight variable (the number of the target population in the postcode district) has to be computed. The difference between the previous one based on 0-19 year olds and the new one based on 0-17 year olds is shown in Table 21.

Table 21 - Old and New Weight Variables

	Ν	Minimum	Maximum	Mean	Std. Deviation
POPFWT1	2210	.04	7.09	1.0000	.75514
POPFWT2	2210	.01	7.18	1.0000	.75617

The new weight has a slightly wider range; but the correlation between the two weights is 0.998.

VIII.2 Modelling with the reduced age range

The OLS results with backward elimination are given in Table 19; the results of putting the new variable in the preferred multi-level are in Table 23.

	Unstandardised Coefficients		Standardized Coefficients	Т	Sig.
	В	Std. Error	Beta		
(Constant)	-1220.3770	358.9517		-3.3998	0.0007
ISJSA_FF	872.8624	3508.8831	0.0162	0.2488	0.8036
ISKIDS3A	17347.1912	1813.2841	0.6737	9.5667	0.0000
Children with LLTI	25412.3412	7974.5229	0.0808	3.1867	0.0015
RESETEX4	0.0001	0.0000	0.5739	9.5776	0.0000

Table 22 - OLS Regression with new dependent (NUNIT2CR), new weight

Random Coefficients		
LEV. PARAMETER (NCONV)	ESTIMAT	E S. ERROR(U)
2 Constant Variance at Level 2 (7)	2.27e+06	3.544e+05
1 Constant Variance at Level 1 (9)	7.753e+06	2.409e+05
Fixed Coefficients		
PARAMETER	ESTIMATE	S. ERROR(U)
C31 Constant	-61.66	393.4
C11 Children not in good health	1.608e+04	5513
C15 Children in income support households	1.136e+04	2243
C26 Children in black ethnic households	6129	1512
C17 Adults on income support or JSA	9109	3972

VIII.3 Runs in subsets of areas with high proportion of ethnic groups

Runs have been attempted for 310 postcode districts where there are more than 20% of ethnic Asian or ethnic black children. The two basic variables children with limiting long term illness and children in lone parent households appear with similar coefficients but neither of the ethnic minority variables appear (see Table 24). This confirms that a similar model applies but that the ethnic minority variable is required.

Table 24 - Model limited to postcode districts with more than 20% ethnic Asian or
ethnic black children (n=310)

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1 LA Dummies	.634	.402	.257	3582.36592
+Children in poor health	.724	.524	.404	3209.14500

d Dependent Variable: NUNITC2R

Coefficients

		Unstandardised Coefficients		Standardized Coefficients	t	Sig.
Model		В	Std. Error	Beta		
1	(Constant)	5104.181	725.841		7.032	.000
3	(Constant)	-6942.817	1753.252		-3.960	.000
	Children in lone parent HHs	24171.476	3912.994	.513	6.177	.000
	Children in poor health	279969.281	82963.960	.232	3.375	.001

a Dependent Variable: NUNITC2R

Reset Test 0.0000844 Significance 6.312

VIII.4 Commentary

In the OLS run, as previously, backward elimination gives the same three variables the income support variable for children, the combined income support variable for adults and children with limiting long term illness. The model is *badly* mis-specified, with a t-test of nearly 10. In the MLN run, all four coefficients are easily statistically significant as before; but this time the model is *not well* specified - although better specified than the OLS model - with a Reset statistic of 3.24 (3.021E-05/9.319E-06).

The following variants have been attempted:

- Introducing the new density variable (it is not statistically significant)
- Deleting the ethnic black variable (it does not improve specification)
- Omitting the B4 postcode district in Birmingham on the grounds that it is an outlier in terms of the inflation rate slightly improves specification to 2.99 (2.875E-05/9.619E-06), but shifts the coefficients round quite substantially.
- Restricting the model to the 310 postcode districts with more than 20% of either ethnic Asian or ethnic black children (produces similar results)

VIII.5 Conclusion

Overall, in all OLS options, R squareds are above 60%, higher than the typical values of 45% obtained in the 1996 modelling; and the models are generally well specified.

The suggestion that the model might be biased by the inclusion of 18 and 19 year olds in the population base through giving undue weight to student towns has been investigated. It transpires that the areas with large proportions of 18-19 year olds are where students in redbrick universities live rather than London. The use of the new weights brought about through changing the age range used as the base (from 0-19 to 0-17) does not make a great deal of difference to the values of the coefficients, although it has worsened the specification of the model. This has been the model adopted for allocation.

IX UNDERSTANDING CHANGES OVER THE LAST TWENTY YEARS

The following table compares the factors included in the 1980s SSA formula, the 1996 formula and the two variants of the 2006 formula.

	1980s (1981	1996 (1991	2006 (2001	2006 (2001
	Census data)	Census data)	Census data; with distance)	Census data; w/o distance))
Source	B&M	CH, D	CH, D and O	CH, D and O
Social Security	On income	IS + JSA	Combined adult	Combined IS
	support	claimant rate	IS	
Family composition	Single adult	Lone Parent	Lone Parent on	
			IS	
Number of children	4 or more			
Ethnic group	Mixed		Mixed + Black ethnic	Black Ethnic
Tenure status	Privately rented			
Ratio persons: rooms	One or more			
Type of Housing		Kids in flats		
Illness		Kids w/LLTI	Kids w/o good health	Kids w/o good health
Population Density		Pop. density		

Table 25 - Comparing Factors included in Formulae over last Twenty Years

In the 1980s, the proportion of households with large numbers of children, and the ratio of persons to room were important but not later; private renting was important in the 1980s, children in flats in the 1990s but not in 2000s. In contrast, from middle of 1990s, children not in good health or with limiting long term illness have appeared in the formulae, together with an ethnicity variable. These changes could have arisen for one or more of the following reasons:

- Changing economic and social conditions
- Changes in relative inequalities
- Changes in Household structure
- Changing attitudes
- Change in social policy, and especially the Children Act, 1989, with its extended concept of need

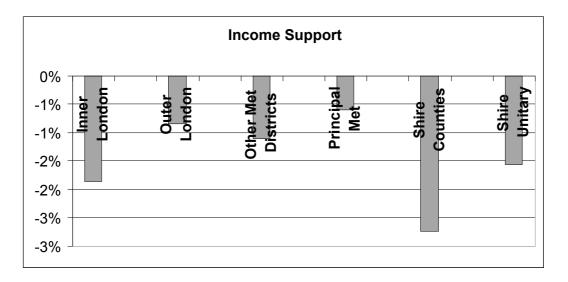
In order to explore this, the following sub-sections explore the changes in the variables included in the models and the changes in the distribution of the values of those variables.

Changes in variables

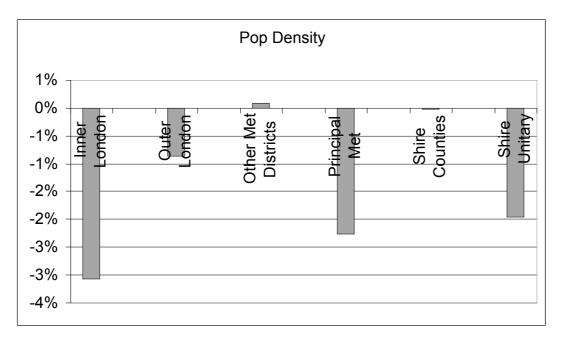
The 'Children Living in Flats' variable has not been included in the current models because of the perverse incentive it creates for authorities, whose priority is NOT to house children in flats. The 'children with long term limiting illness' variable is replaced by the 'children without good health' which covers a similar group of children. The other addition this time was an ethnicity variable.

The old CSS FSS included two variables (density and children living in flats) which had a strong urban bias, this meant that the removal of one of these variables was bound to have an affect on the distribution away from urban areas. The 'Children in Black Ethnic Groups' has an urban bias but not to such a strong extent as the 'Children in Flats' variable.

The overall similarity between the types of variables used in the new formula indicates that it is not solely a change in the types of variables used in the CSS FSS which is responsible for the change in the distribution of the CSS FSS. However, some change can be attributed to the removal of the 'Children in Flats' variable and the addition of 'Children in Black Ethnic Groups' variable, which has a much urban (or London) bias.


Change in the geographical distribution of the values of variables

This section looks specifically how variables have changed in the time between the two censuses; and in particular at three variables that can be compared over time, viz. lone parent families, population density and children living in families in receipt of Income Support. The changes over time suggest that the deprivation variables included in the formulae are no longer mostly restricted to urban areas.


The number of lone parent families increased the least in Inner London; this reflects the fact that in 1991 lone parent families were mainly concentrated in London. In 2001 the lone parent family was no longer a solely urban phenomenon. This may help to explain some of the reason why funding has moved away from Inner London authorities who would have benefited greatly from the previous formula, with the distribution of lone parent families more evenly spread across the country, we would expect that London would no longer be the major beneficiary of such a variable.

1. The number of children living in a household where a parent is claiming income support has decreased across the country. However in Inner London and the Shire Counties there has been a larger decrease. This may help to explain why there has been a movement of funding away from Inner London boroughs. A bigger drop in one type of authority compared to another would cause their share of the CSS FSS to decrease at a greater rate.

The greatest decrease in population density has been in Inner London. This will account for some of the redistribution of funding. With other authorities seeing an increase or much smaller decrease in density compared to London. This demonstrates another decrease in the bias towards London in the FSS variables, contributing to an overall decrease in the share of the FSS which a London authority receives.

Overall these changes in variables, and in the distribution of the values of those variables across the country, can be summed up as reducing the urban bias of the formula.

ANNEXES

Annex I	List of all Independent variables in postcode district level file for analyses			
Annex II	Postcode district level analyses of CIN 2003 Census data. AII.1 Attributing Ward Codes to CIN data AII.2 Note on Heterogeneity			
Annex III	Skewness and Kurtosis within each local Authority			
Annex IV	The role of density and its possible substitutes in the Children's Personal Social Services - SSA: Executive Summary			
Annex V	Results: A: Ordinary Least Squares Runs (May 16 th)			
Annex VI	 Models (June 16th) A Summary B. Ordinary Least Squares results C. Multilevel results 			
Annex VII	Ward Level descriptive statistics			
Annex VIII	Plots of predicted values against dependents and examination of outliers			
Annex IX	Correlations between independent variables and residuals from equations			
Annex X	High Gradient Models Take 1			
Annex XI	November: Full results of OLS regression with new dependent			

TABLES IN ANNEXES

Table AII.1 - Numbers of LAs where combinations of selected variables would create ambiguous client IDs.

Table AII.2 - Numbers of wards and postcode districts by type of local authority

Table AII.3a - Within ward and postcode district variability for inner London LAs

Table AII.3b - Within ward and postcode district variability for outer London LAs

Table AII.3c - Within ward and postcode district variability for metropolitan districts

Table AII.3d - Within ward and postcode district variability for unitary authorities

Table AII.3e - Within ward and postcode district variability for counties

Table AII.4 - Numbers of local authorities by percent of missing or invalid postcodes

Table AII.5 - Types of LAs by levels of missing or invalid postcodes

Table AII.6 - Numbers of valid postcode districts per LA CIN2003 data

Table A.III.1 - Skewness and Kurtosis within each Local Authority

Table AV.1 - CIN 2003 Adjusted Cost Dependent: Final R Squared 0.603 Reset 9.106

Table AV.2 - Square Root Adjusted Cost Dependent Final R Squared 0.638 Reset 0.266

Table AV.3 - Unit Cost Dependent Final R Squared 0.632 Reset 7.022

Table AV.4 - Linear Dependent: Final Pseudo R Squared 0.326 Reset Statistic 0.452

Table AV.5 - Square Root Dependent: Final Pseudo R Squared 0.377 Reset Statistic 3.38

Table AV.6 - National Unit Cost Dependent: Final Pseudo R Squared 0.371 Reset Statistic 0.086

Table A.VI.1 - Variables entering the different models (without minimum distance but with density)

Table A.VI.2 - Recommended models with Minimum Distance

Table A.VI.3 - National Unit Cost Dependant with and without Density

Table A.VI.4 - Raw Cost Dependent: Starting and Ending Runs

Table A.VI.5 - Unit Cost Dependent: Starting and Ending Runs

Table A.VI.6 - Client Numbers Dependent: Starting and Ending Runs

Table A.VI.7 - Linear Dependent Cstdepaj:

Table A.VI.8 - National Unit Cost Dependent:

Table A.VI.9 - Client Numbers Dependent

Table A.VI.10 - National Unit Cost Dependent:

Table A.VII.1 - Ward Level Descriptive Statistics

Table A.VIII.1 - Lists of Districts for Raw Local Costs

Table A.VIII.2 - Lists of Districts for Unit Costs Dependent

Table A.VIII.3 - Lists of Districts for Numbers Dependent

Table A.IX.1 - Correlations between independent variables and Residuals from equations

Table A.X.1 - Unit Costs: Based on only 276 Postcode Districts

Table A.X.2 - Local Raw Cost: Based on only 523 Postcode Districts

Table A.X.3 - National Unit Cost Model; But Based on only 352 Postcode Districts

Table A.X.4 - Local Raw Cost Model; But Based on only 361 Postcode

Table A.X.5 - Numbers Model; But Based on only 324 Postcode Districts

Table A.XI.1 - Full Results of OLS Regression with new dependent (NUNIT2CR)

Annex I - Independent Variables in postcode district level file for analyses

Position Label Name PCDIST 1 Postcode district LA ID 2 NCASES 3 These vars have been reweighted to deal with missing postcodes and partial postcode districts NCLIENTS 4 do not assume they can be used without modification to compute rate per area. Use NDEP1. MISSPCLA 5 INAREALA 6 7 MISSWT 8 Adults on inc support 9 Lone parents on inc support 10 Children in IS hholds INCSUP LONPIS KIS 11 Adults on job seekers allowance JSA INCJSA 12 Adults - inc based JSA 13 Children in inc based JSA hholds KJSA NPERS14 Residents in pcdistK0 1615 Number of people aged 0-15 (i.e. under 16 in postcode district) K0_1916 Number of people aged 0-19IMDHOUSE17 IMD housing deprivationIMDTOTAL18 IMD overall scoreIMDINC19 IMD income scoreIMDEMPLY20 IMD employment scoreIMDHLTH21 IMD health scoreIMDEDUC22 IMD education scoreIMDEDUC23 IMD employment IMDEDUC22 IMD education scoreIMDCRIM23 IMD crime scoreIMDENVIR24 IMD environment scoreIMDCHPOV25 IMD child poverty scoreIMDOPPOV26 IMD older persons povertyYPECACT27 16-24yr olds economically activeYPUNEMP128 Prop of all 16-24yr olds unemployedYPUNEMP229 Prop of econ act 16-24yr olds unemployedYPSTUDNT30 Prop of 16-24yr olds who are studentsSTUDENTS31 Prop of all popln who are unemployedKFLATS33 Children in multiple occupancy dwellings KFLATS 33 Children in multiple occupancy dwellings KFLOOR534 Children living on 5th floor or aboveKNOCENHT35 Children in housing with no CHKNOCAR36 Children in no car HHs KNOCAR36 Children in no car HHsKTWOCAR37 Children in 2car HHsKOWNOCC38 Children in owner occupationKSOCRENT39 Children in social rentalKLONEPAR40 Children in lon par HHsKNINFAM41 Children not in familiesKPORHLTH42 Children without good healthKNTGDHLT43 Children without good healthKPRCARE44 Children mot LLTIKNOEMPL46 Children in HH where noone employedKNEVWKED47 Children in HH where noone ever workedDEP148 HHs with one of census dep measures

DEP2 DEP3 DEP4 YPNOQUAL ETHNW	50 51	HHs with 2 census dep measures HHs with 3 census dep measures HHs with 4 census dep measures 16-19 yr olds with no educ quals
ETHMIX	54	Adult mixed ethnic groups
ETHASN	55	Adult Asian ethnic groups
ETHBLK	56	Adult Black ethnic groups
ETHCHIN	57	Adult Chinese & other non white ethnic groups
KETHNW	58	
KETHMIX	59	Children mixed ethnic groups
KETHASN	60	Children Asian ethnic groups
KETHBLK	61	Children Black ethnic groups
KETHCHIN	62	Children Chinese & other non white ethnic groups
NEWNOS1	63	
NEWNOS2	64	
NDEP1	65	USE THIS AS DEP VAR FOR CLIENT COUNT (no. of clients per 1000 0-19 yr olds)
PERSONS	66	
COUNTY	67	
OLDV4	68	
CNAME	69	
OLDV4N	73	
DIFFLA	74	
NUMLAS	75	
POPFWT	76	
DUM	77	
POPFWT1	78	USE THIS WEIGHTING VARIABLE FOR EACH CASE (corrected num of 0-19 yr olds in each pc district)
NPCDS	79	
LANUM	80	USE THIS AS SECOND LEVEL CONTROL VARIABLE (id number for LA)

ANNEX II - Postcode district level analyses of CIN 2003 Census data.

AII.1 Attributing Ward Codes to CIN data

Prior to receipt of the CIN Census data we had intended to conduct the small area modelling at ward level; and, if necessary, attribute ward level values to individual client data in order to carry-out individual level modelling. We realised that the CIN Census data did not contain a ward code for each client, but were intending to request these codes from LAs and match them with the CIN data. This matching would have been relatively simple if each case on CIN2003 had a unique client ID that was shared with LAs. However, on receipt of the CIN data we find that it does not contain such an ID and understood that the CIN Census team would use some combination of date of birth, date and referral and other variables from the data set when they wanted to query information on individual cases with the LAs.

We checked to see how many variables from the data set would be needed to create a unique ID. As an example, if we combine date of birth, date of referral and sex, we create a code that is never unique in an LA, but which would produce an acceptably small number of ambiguities in more than half of the LAs. The table below summarises the numbers of ambiguous codes per LA.

Table AII.1 - Numbers of LAs where combinations of selected variables would create ambiguous client IDs.

Number of ambiguous cases if date of birth, date of referral and sex are used to construct an ID	Number of LAs
Less than 50	78
50 - 99	31
100 - 199	21
200 or more	16

The problem is obtaining ward codes from a sufficient number of LAs in the first place. We have obtained ward information from some LAs, though this will mainly be as a check on the bulk of the analyses, which has been conducted at postcode district level.

AII.2 - Note on Heterogeneity

Initially we suspected that postcode districts were too large and socially heterogeneous to use in small area modelling, let alone to use as the basis for attributing characteristics to individuals.

However we have carried out a series of checks on the social composition of these districts and find that in respect of a typical set of need drivers they are often no more heterogeneous than wards.

If we first consider the numbers of wards and postcode districts in each type of authority, we see that ratio of the number of wards per LA to the number of postcode districts increases from 1.5 in inner London to 4.2 in the counties (Table AI.2) - though it must be remembered that these ratios are based on standard and not synthetic wards and the ratios would decrease for rural areas if synthetic wards were used.

	Number of	Number of	Number of PC	Ratio wards to
Authority type	LA.s	wards	districts	PC districts
All Inner London LA.s	13	230	152	1.5
All Outer London LA.s	20	403	170	2.4
Metropolitan Districts	36	826	462	1.8
Unitary authorities	46	1058	406	2.6
Counties	34	5375	1293	4.2

 Table AII.2 - Numbers of wards and postcode districts by type of local authority

The Isles of Scilly have been excluded from this table

To test social heterogeneity of wards and postcode districts we construct 8 census based need indicators for census output areas. These indicators were chosen because they are easy to compute for census output areas, not because they had special relevance to children's services - though several of them have appeared in previous formulae or been strong candidates for inclusion.

Variables used in test

Percentage non-white Percentage working age with LLTI Percentage aged 16-74 with no qualifications Percentage households in flats Percentage no car households Percentage households in owner occupation Percentage lone parent households with children Percentage households with children and all adults unemployed

We compute the standard deviation in the values of these indicators for the output areas within each ward and postcode district. We then average these standard deviations for the wards and postcodes districts in each type of authority.

We expected the larger populations (and areas) of postcode districts, compared to wards, to result in their being more heterogeneous. However, no large or clear effects are found. In the inner London boroughs (Table AII.3a), the average standard deviations for 6 of these indicators are <u>less</u> for postcode districts than wards. In outer London (Table AII.3b), the within postcode district variability is greater for only one indicator - the proportion of non-white residents. The effect is more as predicted for metropolitan districts (table AII.3c), where all but one of the indicators shows greater variability in postcode districts - but the differences between the district and ward values are not great. In unitaries (Table AII.3d), the trend is reversed and all but two indicators are more variable within wards. Surprisingly, for counties (Table AII.3e) all but one of the indicators, the percent of non-white residents, are on average less variable within postcode districts than within wards.

Despite the very similar average heterogeneity of wards and postcode district analysis, if we are to proceed with a postcode district level small area analysis, we might want to exclude those LAs with the highest within postcode district variability - or at least compare results when these are excluded. We need to take particular note of the variability in the proportion of the population in ethnic minority populations.

All Inner London LA.s			
Number of wards = 230	Mean	SD	SD
Number of postcode districts =152	ward	within	within
	value	wards	pcdists
Percentage non-white	29.57%	10.50%	10.10%
Percent working age with LLTI	8.41%	2.88%	3.16%
Percent 16-74 with no qualifications	22.01%	8.48%	8.51%
Percent households in flats	72.14%	18.72%	15.18%
Percent no car households	50.40%	10.49%	10.38%
Percent households in owner occupation	39.43%	15.63%	15.23%
Percent LP households with kids	8.05%	4.68%	4.24%
Percent households, all adults unemployed with kids	7.60%	4.88%	4.17%

Table AII.3a - Within ward and postcode district variability for inner London LAs

Table AII.3b - Within ward and postcode district variability for outer London LAs

All Outer London LA.s			
Number of wards = 403	Mean	SD	SD
Number of postcode districts =170	ward	within	within
	value	wards	PC dists
Percentage non-white	26.99%	3.45%	4.49%
Percent working age with LLTI	7.28%	0.60%	0.56%
Percent 16-74 with no qualifications	24.91%	1.83%	1.69%
Percent households in flats	30.85%	5.40%	5.33%
Percent no car households	28.38%	2.29%	2.23%
Percent households in owner occupation	68.09%	4.49%	3.99%
Percent LP households with kids	7.24%	1.91%	1.57%
Percent hholds, all adults unemployed with kids	6.11%	1.92%	1.68%

Table AII.3c - Within ward and postcode district variability for metropolitan districts

Metropolitan Districts			
Number of wards =826	Mean	SD	SD
Number of postcode districts = 462	ward	within	within
	value	wards	PC dists
Percentage non-white	8.77%	6.73%	7.43%
Percent working age with LLTI	10.24%	0.91%	1.06%
Percent 16-74 with no qualifications	35.94%	2.77%	3.08%
Percent households in flats	14.02%	6.51%	6.56%
Percent no car households	33.81%	3.19%	3.35%
Percent households in owner occupation	65.35%	5.07%	5.21%
Percent LP hholds with kids	8.04%	1.70%	1.72%
Percent hholds, all adults unemployed with kids	6.86%	2.14%	2.08%

Table AII 3d Within word and	nastanda district variability for unitary authorities
Table All.3u - within waru anu	postcode district variability for unitary authorities

Unitary authorities				
Number of wards = 1058	Mean ward	SD within	SD within PC districts	
Number of postcode districts =406	value	Wards		
Percentage non-white	5.80%	4.00%	5.05%	
Percent working age with LLTI	8.19%	1.05%	1.04%	
Percent 16-74 with no qualifications	29.10%	2.72%	2.70%	
Percent households in flats	14.56%	7.35%	6.96%	
Percent no car households	23.94%	3.93%	4.06%	
Percent households in owner occupation	71.78%	6.11%	5.00%	
Percent LP households with kids	6.51%	1.93%	1.65%	
Percent hholds, all adults unemployed with kids	4.78%	2.23%	1.98%	

Table AII.3e - Within ward and postcode district variability for counties

Counties				
Number of wards =5375	Mean ward	SD within	SD within	
Number of postcode districts =1293	value	wards	PC districts	
Percentage non-white	2.47%	2.23%	3.48%	
Percent working age with LLTI	7.34%	1.02%	0.82%	
Percent 16-74 with no qualifications	27.30%	2.73%	2.26%	
Percent households in flats	9.52%	7.44%	6.06%	
Percent no car households	16.93%	3.95%	3.39%	
Percent households in owner occupation	75.38%	6.15%	4.56%	
Percent LP households with kids	4.83%	1.66%	1.38%	
Percent hholds, all adults unemployed with kids	3.11%	1.76%	1.60%	

Missing and invalid postcode districts in the CIN 2003 data set

One potential obstacle to a postcode district analysis is the number of missing and invalid postcodes on the CIN 2003 census. The total number of clients on the data set is 378049, and when blank and invalid postcode districts are removed this reduces to 330479 - a loss of 12.58%.

As can be seen from Table AII.4, the 47,570 missing postcodes are not evenly distributed throughout the local authorities. Three of the authorities have missing or invalid postcodes for 80% or more of their clients (12,140 clients in all); whereas 68 authorities have less than 5% missing or invalid postcode districts.

Percent of missing or invalid postcodes	N of LAs	Percent of LAs	Cumulative N of LAs
under 5%	68	46.6	68
5% - 9.9%	28	19.2	96
10% - 19.9%	29	19.9	125
20% - 49.9%	15	10.3	140
50% - 79.9%	3	2.1	143
80% and over	3	2.1	146

Table AII.5 shows the distribution of LAs we would achieve if we limited the analysis to those with less than 5, 10 and 20 missing or invalid postcodes. It is worth noting that the number of inner London boroughs is reduced to 2 if we have a 5% cut-off, but is restored to 5 and 10 with 10% and 20% thresholds.

A related concern is that missing or invalid postcodes might excessively reduce the number of data points (small areas) within each local authority. Table AII.6 shows the effects of removing authorities with (up to) 5, 10 and 20% missing and invalid postcodes and only counting valid postcodes as potential data points. In all three cases, no authorities have less than 10 postcode districts and the vast majority of authorities have more than 20 districts. From these figures it looks a though we should be able to use the CIN2003 at postcode district level to give at least 50% coverage of local authorities - though we might want to restrict the number further by selecting those in which postcode districts are (internally) most socially homogeneous. We would certainly want to restrict the attribution for the individual level work to these more homogeneous areas. The main practical difficulty of postcode district level work is in obtaining need drivers to suitable boundaries. The administrative data, such as claimant counts may have to be commissioned specially. Census data that is released for census output areas can be aggregated to very close approximations postcode districts - as in these tests, but more approximate weighted averaging may have to be used with those data that are only released at ward level.

Type of LA Number of LAs with these percent missing Po				
	less than 5%	less than 10%	less than 20%	All LAs
Inner London Boroughs	2	5	10	13
Outer London Boroughs	7	13	15	19
Unitary Authorities	24	32	40	46
Metropolitan Districts	18	22	30	36
Counties	17	24	30	32
Total	68	96	125	146

Table AII.5 - Types of LAs by levels of missing or invalid postcodes

		% of missing an aber of postcode			
Number of postcode	less than 5%	less than 10%	less than 20%		
districts in CIN2003	N of LAs	N of LAs	N of LAs	N of LAs	% of LAs
less than 10	0	0	0	2	1.4
10 – 19	3	5	5	13	9.0
20 - 29	10	13	19	28	19.3
30-49	17	22	28	30	20.7
51-99	25	36	46	49	33.8
100 or more	13	20	27	23	15.9
All LAs	68	96	125	145	100.0

Table AII.6 - Numbers of valid postcode districts per LA CIN2003 data

	N	Minimum	Maximum	Mean		Std. Deviation	Variance	Skewness		Kurtosis	
All	2210	0	54540.7	4201.25	68.35	3213.09	10323932	3.260	0.0521	27.745	0.104
All	2210	0	54540.7	4201.23	08.55	5215.09	10525952	5.200	0.0321	21.145	0.104
					Std.				Std.		Std.
LA_ID	Statistic	Statistic	Statistic	Statistic	Error	Statistic	Statistic	Statistic	Error	Statistic	Error
104	13.895	0.00	9895.27	4619.74	584.12	2177.35	4740854.11	0.344	0.599	0.383	1.158
106	8.941	1164.43	2707.51	1859.65	209.78	627.26	393457.00	0.281	0.719	-1.868	1.404
107	12.351	511.87	5850.55	3430.74	461.19	1620.80	2626977.18	-0.054	0.630	-0.625	1.217
108	8.763	1371.50	16468.47	4621.08	1065.10	3152.88	9940644.20	2.767	0.725	14.461	1.417
109	7.464	553.44	4561.16	3157.54	558.75	1526.57	2330413.56	-0.517	0.773	-1.448	1.534
110	13.824	3017.50	9945.89	5228.08	352.23	1309.62	1715108.55	0.643	0.601	2.775	1.160
111	4.614	2009.85	8700.18	5514.37	1042.01	2238.15	5009315.89	1.054	0.946	2.039	2.164
112	7.353	1222.72	10204.85	4754.37	1108.88	3006.82	9040982.46	0.801	0.778	-0.117	1.546
113	6.888	308.65	6295.47	4239.68	779.45	2045.69	4184840.98	-0.945	0.799	0.626	1.602
114	9.076	124.15	7205.62	2732.34	406.83	1225.65	1502217.13	0.209	0.715	3.171	1.394
116	23.125	962.77	10031.86	3307.97	452.01	2173.65	4724738.00	1.951	0.480	4.601	0.933
117	4.687	677.19	4965.30	3900.28	644.49	1395.27	1946788.21	-1.798	0.940	9.482	2.128
204	10.600	27.93	5682.89	3738.11	501.95	1634.20	2670615.67	-0.662	0.671	-0.109	1.300
205	14.324	173.31	16040.54	4247.35	642.10	2430.12	5905479.59	2.752	0.592	16.303	1.143
206	12.419	4.06	4809.96	2444.71	416.35	1467.22	2152732.80	-0.195	0.628	0.407	1.214
207	24.244	1211.36	12222.31	5374.42	654.28	3221.53	10378236.88	0.419	0.470	-0.906	0.914
209	26.248	854.66	10503.50	5313.00	523.62	2682.63	7196524.68	0.296	0.454	-0.870	0.883
210	9.643	1225.96	5310.95	3054.00	390.08	1211.33	1467331.24	0.140	0.697	-0.447	1.356
211	20.147	0.00	7219.08	3901.00	478.49	2147.72	4612717.77	-0.086	0.510	-0.903	0.989
212	35.195	1055.40	10854.79	4470.07	523.22	3104.04	9635074.87	0.863	0.397	-0.355	0.776
213	15.449	351.82	6450.00	4827.60	430.41	1691.74	2861982.16	-0.997	0.573	0.215	1.107
214	14.309	0.00	7454.81	2252.21	457.66	1731.16	2996904.03	1.616	0.592	3.070	1.143
215	12.687	751.84	16495.32	8089.12	986.87	3515.16	12356379.61	0.822	0.623	0.431	1.203
216	8.296	0.00	8360.03	4674.04	670.26	1930.53	3726927.06	-0.053	0.741	1.295	1.455

ANNEX III - Descriptives including Skewness and Kurtosis overall and for each Local Authority

217	7.372	255.69	8629.90	4446.09	1009.74	2741.51	7515869.93	0.641	0.777	0.399	1.544
218	26.247	0.00	4471.94	2010.93	238.01	1219.33	1486775.09	0.594	0.454	-0.508	0.883
219	8.061	1279.46	5403.24	2773.02	485.56	1378.60	1900548.34	0.222	0.750	-1.586	1.475
304	13.478	356.77	5048.12	3785.16	378.22	1388.57	1928134.20	-1.074	0.607	0.372	1.173
305	9.177	1330.62	6492.41	2556.27	335.40	1016.05	1032364.25	1.028	0.711	5.724	1.387
306	20.645	560.68	19868.99	7149.53	662.85	3011.75	9070646.02	0.555	0.505	1.618	0.979
307	11.810	417.70	5470.51	2729.37	423.27	1454.63	2115935.02	0.404	0.642	-0.238	1.241
308	11.153	934.25	5787.18	3918.88	311.89	1041.58	1084893.21	0.483	0.657	0.552	1.272
309	10.774	3386.37	9342.95	7146.46	630.91	2070.87	4288500.01	-1.020	0.666	-0.095	1.291
310	13.683	0.00	11789.92	4602.01	1024.75	3790.55	14368261.13	1.135	0.603	-0.280	1.165
311	10.826	2077.19	7254.06	4682.24	583.65	1920.37	3687825.57	-0.135	0.665	-1.315	1.288
312	10.150	219.07	3628.43	1245.16	299.41	953.92	909966.78	1.243	0.683	1.952	1.325
313	14.794	507.37	6014.43	3707.80	339.21	1304.73	1702309.43	0.524	0.584	-0.107	1.127
315	8.219	1279.85	8501.00	4740.82	713.29	2044.96	4181866.00	0.605	0.744	0.234	1.461
316	22.408	56.70	25942.43	4739.85	742.86	3516.47	12365533.23	1.482	0.487	3.593	0.945
317	13.747	360.03	7957.72	3884.91	618.03	2291.47	5250819.70	0.458	0.602	-0.368	1.163
318	8.769	1013.65	5295.34	3889.41	418.72	1239.92	1537406.40	-1.127	0.725	1.145	1.417
319	15.558	574.34	10643.87	5136.55	839.51	3311.33	10964873.49	0.507	0.571	-0.844	1.104
320	31.522	718.54	6015.07	2532.49	263.74	1480.72	2192535.72	1.102	0.417	0.217	0.815
321	6.231	744.66	4022.51	3604.70	218.49	545.39	297450.33	-2.189	0.832	20.798	1.699
322	9.471	1449.41	4179.78	2251.15	382.37	1176.71	1384655.62	1.135	0.702	-0.511	1.367
323	56.163	381.73	4932.25	2220.30	133.61	1001.32	1002633.58	-0.013	0.319	-0.425	0.627
324	8.191	1587.12	6051.33	5256.33	316.69	906.37	821501.94	-2.035	0.745	11.617	1.464
325	6.384	1481.38	8843.40	5905.62	1026.65	2593.91	6728348.67	-0.396	0.824	-1.095	1.674
404	23.342	316.01	13423.53	3537.81	323.73	1564.07	2446307.55	0.531	0.478	3.118	0.929
406	55.521	0.00	14076.96	5579.69	422.32	3146.78	9902197.68	1.023	0.320	0.553	0.631
407	15.821	2258.03	54540.70	3591.32	739.21	2940.23	8644932.30	18.955	0.567	427.562	1.096
408	14.444	1698.01	6291.32	3047.32	356.27	1354.00	1833321.96	1.828	0.590	3.129	1.139
409	14.559	3643.49	9987.27	5574.83	430.02	1640.82	2692281.18	1.645	0.588	3.064	1.135
410	9.810	0.00	8879.38	3907.06	1073.55	3362.53	11306587.89	0.666	0.692	-1.379	1.346
411	13.082	170.83	12480.67	5673.18	654.40	2366.88	5602127.18	-0.274	0.615	0.227	1.188
412	11.930	1525.17	18139.16	5646.03	1046.66	3615.17	13069490.23	1.236	0.639	2.473	1.235

413	38.278	0.00	11830.91	2496.62	226.12	1399.01	1957219.02	1.391	0.382	8.074	0.747
414	11.737	4258.41	22835.87	6178.52	532.59	1824.59	3329135.67	5.457	0.643	72.468	1.244
415	7.968	546.51	7585.43	4363.75	777.09	2193.62	4811975.38	0.434	0.753	-0.156	1.484
416	25.148	0.00	9941.13	2695.21	264.14	1324.59	1754536.58	0.550	0.462	3.059	0.899
417	12.946	155.21	5546.39	1644.95	284.61	1024.05	1048685.77	1.628	0.617	5.302	1.193
418	8.402	1326.01	12298.50	3558.93	732.78	2124.01	4511398.05	3.233	0.737	19.848	1.446
503	29.662	41.58	4631.94	2070.27	172.13	937.48	878864.42	0.011	0.429	0.059	0.837
504	31.739	0.00	6630.18	3237.42	304.11	1713.28	2935333.71	0.738	0.416	-0.253	0.812
506	34.181	314.26	9571.11	2962.56	256.85	1501.67	2255000.57	1.254	0.402	3.869	0.786
507	11.289	1289.44	9444.35	6367.65	772.10	2594.14	6729581.48	-0.484	0.654	-1.062	1.265
508	29.014	134.60	8034.01	2285.91	254.38	1370.20	1877449.98	0.809	0.433	0.226	0.845
509	15.260	4319.37	28721.60	6958.82	778.58	3041.43	9250322.03	5.995	0.576	55.262	1.113
510	1.670	1223.12	1436.31	1409.64	86.15	111.34	12396.58				
511	35.048	412.78	14555.86	4050.47	349.62	2069.81	4284133.98	1.781	0.397	7.079	0.777
512	13.658	7277.27	25200.43	8727.94	527.97	1951.22	3807262.94	7.264	0.604	81.555	1.166
606	50.541	795.02	12982.35	2936.49	232.95	1656.08	2742603.53	1.134	0.335	2.177	0.659
607	34.843	503.37	17253.59	4954.63	611.25	3608.09	13018337.48	0.835	0.399	-0.327	0.779
608	28.928	0.00	6884.85	2558.97	332.73	1789.57	3202567.35	0.965	0.434	0.446	0.846
609	31.551	360.11	7784.14	1985.57	203.01	1140.30	1300289.50	0.696	0.417	0.062	0.814
611	10.363	3892.43	8053.79	4914.77	471.14	1516.66	2300269.14	1.766	0.677	2.145	1.313
612	23.549	266.50	5395.10	1853.24	302.16	1466.30	2150030.04	1.030	0.476	0.046	0.925
613	11.225	0.00	38853.43	4858.71	1375.75	4609.29	21245519.49	2.946	0.655	22.042	1.268
614	5.735	0.00	1957.28	1253.88	295.68	708.08	501370.65	-1.135	0.861	-0.311	1.795
615	7.187	259.87	6679.20	2731.96	858.13	2300.55	5292536.25	1.433	0.785	0.965	1.565
616	6.726	2580.10	8759.11	4769.24	881.51	2286.23	5226837.73	1.216	0.807	0.230	1.623
617	6.278	4016.88	5090.41	4543.84	187.96	470.96	221801.52	0.352	0.830	-1.931	1.691
618	6.263	415.32	2507.46	2294.82	162.47	406.60	165321.29	-5.382	0.830	45.232	1.694
619	7.505	137.13	3565.59	2073.48	343.64	941.38	886197.71	0.364	0.772	1.409	1.530
621	7.574	3959.66	10941.87	6848.71	903.21	2485.70	6178712.52	0.389	0.769	-0.540	1.522
622	7.329	134.92	5399.33	3101.48	624.10	1689.55	2854592.98	0.037	0.779	-1.322	1.549
623	26.015	1247.99	8024.59	3047.08	258.52	1318.57	1738625.64	1.085	0.455	1.436	0.886
624	8.160	778.05	20499.78	4964.84	676.29	1931.89	3732196.70	6.542	0.746	89.741	1.467

702	7.894	1209.21	10669.02	7149.36	718.02	2017.30	4069506.21	-0.870	0.756	0.791	1.491
703	11.077	1678.89	11386.19	6480.22	618.67	2059.01	4239541.41	0.846	0.659	3.561	1.276
704	11.067	211.63	44325.80	8158.54	5234.81	17414.63	303269224.12	2.000	0.659	2.407	1.276
705	6.345	5163.52	14509.34	8938.85	669.57	1686.57	2844529.52	0.633	0.826	1.602	1.680
706	7.637	3866.47	18103.28	11983.85	1114.71	3080.44	9489094.46	0.301	0.766	2.441	1.516
707	5.794	579.39	24999.71	11998.45	3791.63	9126.63	83295341.03	0.440	0.857	-0.750	1.782
708	12.001	2518.35	12828.75	8589.88	672.81	2330.81	5432652.44	-0.266	0.637	0.776	1.232
709	12.342	4479.83	18907.09	8595.47	572.02	2009.60	4038480.15	1.545	0.630	9.554	1.218
710	11.685	1535.30	9358.86	8075.77	481.73	1646.69	2711576.83	-1.697	0.644	3.078	1.246
711	10.760	75.32	7537.61	5841.09	421.93	1384.04	1915574.32	-2.918	0.667	18.116	1.292
712	9.940	6249.70	15724.85	9676.90	678.96	2140.56	4581992.62	0.097	0.689	3.182	1.338
713	5.827	36.22	49518.73	14304.20	3734.48	9014.85	81267468.20	1.748	0.855	15.965	1.775
716	9.083	2879.31	8135.92	6003.41	681.95	2055.30	4224278.16	-0.023	0.714	-2.317	1.394
717	15.055	2666.76	16907.18	9110.09	1038.48	4029.35	16235625.50	0.479	0.579	-0.402	1.119
718	10.846	1243.37	10408.73	4692.38	966.09	3181.61	10122611.97	0.641	0.665	-1.152	1.287
719	12.651	450.65	9558.05	7159.17	659.64	2346.21	5504716.11	-0.927	0.623	1.322	1.205
720	13.722	247.34	14699.78	4580.56	1070.78	3966.48	15732936.18	1.713	0.602	3.242	1.164
721	17.092	3762.12	7236.44	5283.66	221.71	916.60	840148.58	0.136	0.548	-0.165	1.061
722	14.273	3737.77	7212.30	5196.39	343.01	1295.89	1679330.01	0.102	0.593	-1.926	1.145
723	13.757	368.02	12015.01	7191.22	993.58	3685.24	13581008.97	0.014	0.602	-1.245	1.163
724	10.607	0.00	17421.71	13675.21	1215.41	3958.48	15669530.14	-1.655	0.671	3.757	1.300
725	10.102	4156.03	10751.42	5933.72	340.48	1082.13	1170999.90	0.664	0.684	6.812	1.328
726	10.620	1208.01	7878.20	3442.09	667.31	2174.69	4729256.64	1.269	0.670	1.081	1.299
727	12.288	2630.33	6904.91	4683.69	346.55	1214.81	1475754.32	0.994	0.631	0.551	1.220
728	10.477	2470.44	13140.69	6947.43	855.99	2770.73	7676941.50	0.528	0.674	0.470	1.307
729	6.742	287.61	9091.74	4072.08	792.96	2058.90	4239048.64	1.931	0.806	7.956	1.621
730	8.487	866.44	6233.92	4617.74	516.87	1505.79	2267389.14	-0.676	0.734	0.877	1.439
731	15.296	2869.76	7919.45	5111.27	457.09	1787.68	3195802.58	0.453	0.575	-1.095	1.112
733	7.448	0.00	6040.12	2792.08	389.36	1062.62	1129158.99	0.382	0.774	4.097	1.536
735	11.119	2922.96	18525.47	8315.87	823.94	2747.42	7548293.75	-0.039	0.658	4.002	1.273
803	5.781	328.98	6007.30	3290.08	600.15	1443.05	2082397.78	-0.041	0.858	2.068	1.785
805	48.930	157.16	6827.97	3152.43	220.14	1539.89	2371273.66	0.434	0.340	0.198	0.668

807	34.207	0.00	11531.87	3343.87	239.78	1402.40	1966712.21	0.897	0.402	3.792	0.786
809	16.776	71.40	5604.98	2931.00	338.28	1385.53	1919691.89	0.622	0.553	-0.240	1.069
810	6.736	635.90	10652.28	3727.85	952.03	2470.86	6105139.83	2.006	0.806	5.702	1.622
811	6.153	912.49	10719.80	4308.26	756.60	1876.79	3522333.25	1.721	0.836	16.416	1.713
812	59.691	17.04	5644.32	2108.29	201.15	1554.06	2415102.41	0.843	0.309	-0.295	0.610
813	9.009	1728.18	9420.65	4048.74	821.09	2464.49	6073699.24	1.829	0.717	2.951	1.399
814	10.296	3152.90	9397.29	5624.79	495.23	1589.04	2525056.77	0.837	0.679	3.347	1.317
815	22.075	0.00	8831.44	3606.48	515.90	2423.93	5875451.63	0.768	0.490	-0.086	0.951
816	10.210	3853.00	8397.37	5709.65	646.46	2065.66	4266936.85	0.667	0.681	-1.742	1.322
817	20.827	699.74	5746.75	2795.62	236.55	1079.55	1165419.34	0.361	0.503	-0.139	0.975
820	64.839	0.00	21631.89	3433.24	375.02	3019.78	9119043.47	3.498	0.297	17.361	0.587
821	13.405	583.07	5226.88	2344.41	355.57	1301.86	1694842.09	1.088	0.608	1.410	1.175
902	22.171	5.59	8139.15	2786.34	364.30	1715.31	2942285.28	1.137	0.489	1.741	0.950
904	26.397	160.79	6364.68	2866.37	318.44	1636.08	2676741.46	0.496	0.452	-0.787	0.881
905	23.308	0.00	5686.37	3241.47	366.42	1769.02	3129434.45	-0.225	0.478	-1.211	0.929
908	7.708	1290.95	4069.28	3562.46	204.94	568.98	323733.81	-1.119	0.763	4.136	1.509
909	18.025	1106.96	22743.21	5263.51	802.92	3408.88	11620494.61	3.328	0.536	19.351	1.037
910	8.434	10.19	7701.05	3053.01	823.37	2391.17	5717708.63	1.372	0.736	1.723	1.443
911	11.996	497.69	5380.29	1915.09	455.59	1577.96	2489963.64	1.861	0.637	2.667	1.232
913	11.717	1682.81	19607.44	7016.19	1425.27	4878.80	23802649.36	1.313	0.644	2.793	1.245
914	5.620	3681.38	8654.94	5600.04	821.12	1946.55	3789072.49	1.179	0.868	0.750	1.821

ANNEX IV - The Role of Density and Its Possible Substitutes in the Children's Personal Social Services - SSA:

Executive Summary of a 2001 report by Paul Dixon and Roy Carr-Hill for the SSA County Council Network (References are to the sections of that report)

AIV.1. The purpose of this exercise was to re-examine the role of density in the models that had been developed as a basis for the formulae used to distribute Children's SSA revenues. These formulae were based on linking data on utilisation extracted from 25 authorities (and 1030 electoral/synthetic wards) with Census SAS data.

AIV.2. After extensive data exploration, we had settled on a model including the following variables;

- the proportion of children 0-17 with limiting long term illness;
- the proportion of income support claimants as a proportion of all children;
- the proportion of all dependent children aged 0-18 in lone parent households; and
- the ratio of population to area (persons per hectare).
- AIV.3. The results and sensitivity analyses between the three different classes of authority are reviewed in Section I (Tables 1+2) and the implications of excluding density from the current formulae with the existing data in Section II (Tables 3+4). These show:
 - the coefficients vary substantially between models estimated for the different groups of authorities.
 - the introduction of an intermediate patch level systematically reduced the 'power' of the density variable both in all authorities combined and in the separate classes of authority, although density remained just significant in the County authorities.
 - the correlations between density and the dependent variable are less strong in urban areas than in County authorities, presumably because urban areas are homogenous in that respect.
 - there is a high inter-correlation between population density and the proportion of dependent children living in flats, and much of this is due to differences between the classes of authorities rather than differences between wards.
- **AIV.4.** Variability between models estimated for different groups of authorities suggests that different models are appropriate for the different groups of authorities (although, of course, this would be difficult to implement in the context of a national formula).
- **AIV.5.** In addition, it is important to understand the implications of the systematic variation in the behaviour of the density variable because, unlike the other drivers that have been identified, there is no clear link between this variable and need for child care services. Indeed, the justification for its inclusion in the formula rests substantially on its explanatory power and that varies between different groups of authorities. These empirical and theoretical issues have led us to search for explanations for the effect of the density variable.
- **AIV.6.** In section IV, we search for an explanation of these differences between authorities with the new data. In addition to the obvious differences in the

population densities between the three groups of authorities, there are also very large (tenfold) differences between the three types of authorities in terms of the proportions of dependent children living in flats. Moreover, *at the authority level*, there is a very high inter-correlation of 0.97 between dependent children in flats and population density. Indeed, the latter correlation with an N of 32 cannot be treated as statistically significantly different from 1.0; in other words, in the SSA context, they could have been substituted for each other.

AIV.7. The overall effect of population density is to reinforce the inclusion in the model of the variable measuring the proportion of dependent children living in flats. We conclude that, given their high level of inter-correlation, it was inappropriate to include both dependent children living in flats and population density in the same model.

ANNEX V - Results

A: Ordinary Least Squares Runs (May 16th 2005)

		Initia	l Model				Fina	al Model		
	В	Std.	Beta	Т	Sig	В	Std.	Beta	Т	Sig
		Error					Error			
(Constant)	-1583.3	468.9		-3.38	.001	-1391.6	422.9		-3.29	.001
MINDIST	-1.616	1.055	027	-1.53	.126	-1.262	1.065	021	-1.19	.236
Children in lone	6891.3	2185.1	.201	3.15	.002	13035.7	1624.1	.381	8.03	.000
parent HHs										
Lone parents on inc	43394.3	14796	.212	2.93	.003	58085.4	9891.1	.283	5.87	.000
support										
Children without	25864.5	5134.3	.176	5.04	.000	11444.0	4130.3	.078	2.77	.006
good health										
Adult Asian ethnic	-5324.7	918.6	183	-5.80	.000					
groups										
Adults on job seekers	32175.3	7378.7	.199	4.36	.000					
allowance										
HHs with 3 dep	-11402.4	3701.5	159	-3.08	.002					
measures										
Children providing	21178.9	8877.8	.039	2.39	.017					
informal care										
ISKIDS3B	8790.9	3027.3	.351	2.90	.004					
Children in HH where	-6229.7	3064.2	212	-2.03	.042					
noon employed										

Table AV.1 - CIN 2003 Adjusted Cost Dependent: Final R Squared 0.603 Reset 9.106

Table A.V.2 - Square Root Adjusted Cost Dependent Final R Squared 0.638 Reset 0.266

		Ini	tial mode	l			Fir	al mode	l	
	В	Std.	Beta	Т	Sig	В	Std.	Beta	Т	Sig
		Error					Error			
(Constant)	25.58	6.950		3.68	.000	11.922	2.87		4.16	.000
MINDIST	-0403	.007	093	-5.54	.000	-0.0353	.007	082	-4.84	.000
CMBINCJS	68.49	25.32	.182	2.71	.007	58.25	14.79	.155	3.94	.000
ISKIDS3B	59.00	19.20	.322	3.07	.002					
STUDENTS	-17.99	7.91	041	-2.27	.023					
Children in owner	-12.53	6.17	088	-2.03	.042					
occupation										
Children in lone	65.26	15.38	.260	4.24	.000	119.23	9.03	.475	13.20	.000
parent HHs										
Children without	231.54	34.86	.215	6.64	.000	166.08	29.64	.154	5.60	.000
good health										
Children in HH where	-60.36	22.54	280	-2.68	.007					
noon employed										
Adult Asian ethnic	-29.48	6.42	138	-4.59	.000					
groups										
Children mixed ethnic	47.85	24.13	.061	1.983	.047					
groups										

		Initia	l model				Fina	l model		
	В	Std.	Beta	Т	Sig	В	Std.	Beta	Т	Sig
		Error					Error			
(Constant)	-1363.8	393.9		-3.46	.001	-997.6	320.5		-3.11	.002
MINDIST	-3.061	.903	057	-3.39	.001	-3.31	.916	061	-3.61	.000
CMBINCJS	33736.1	2738.0	.719	12.32	.000	19311.4	1505.7	.412	12.83	.000
Prop of econ act 16-	20619.7	7131.2	.193	2.89	.004					
24yr olds										
unemployed										
YPUNEMP2	-22933.0	5654.6	364	-4.06	.000					
Children in social	2049.4	619.6	.110	3.31	.001	4421.3	562.1	.238	7.87	.000
rental										
Children without	16327.0	4651.4	.122	3.51	.000					
good health										
Children with LLTI	20735.4	7684.3	.074	2.70	.007	30253.4	7007.5	.108	4.32	.000
HHs with 3 dep	-8163.4	3528.9	125	-2.31	.021					
measures										
Adult Asian ethnic	-3630.5	793.8	137	-4.57	.000					
groups										
Children Black	5849.3	1287.5	.163	4.54	.000	5880.6	1259.1	.164	4.67	.000
ethnic groups										

Table A.V.3 - Unit Cost Dependent Final R Squared 0.632 Reset 7.022

B - Multi level results

Variance	Estimates	5	Coefficients				
Basic Model				Unstand. Coeff.	Std.	t	Sig.
LA_ID	3665000	542000	(Constant)	-191.1	376.8		
PCDIST	9510000	295500	MINDIST	-3.089	1.091		
Final Mo	del		Lone parents on income support	41990	14790		
LA_ID	1593000	267400	Children without good health	19690	4848		
PCDIST	7319000	227300	Combined adult income support	13170	3738		
			Children in ethnic mixed	10310	3885		
			households				
			Children in black ethnic groups	4406	1641		

Table A.V.5 - Square Root Dependent: Final Pseudo R Square	d 0.377 Reset Statistic 3.38
--	------------------------------

Variance	Estimates		Coefficients				
Basic Mo	del			Unstand. Coeff.	Std.	t	Sig.
LA_ID	195.3	28.35	(Constant)	19.69	2.687		
PCDIST	462.8	14.38	MINDIST	-0.05407	0.00725		
Final Mo	del		Children in lone parent households	35.91	11.73		
LA_ID	89.64	14.16	Lone parents on income support	507.1	73.13		
PCDIST	320.2	9.945	Children without good health	234.2	31.86		

Variance Estimates Basic Model			Coefficients			t	
				Unstand. Coeff.	Std.		Sig.
LA_ID	3303000	476700	(Constant)	601.6	335.3		
PCDIST	7428000	230900	MINDIST	-3.448	0.9276		
Final Mo	del		Children without good health	10550	4566		
LA_ID	1445000	229200	Children in income support	5594	1855		
			households				
PCDIST	5309000	164900	Combined adult income support	15970	3280		
			Children in black ethnic groups	5418	1240		

 Table A.V.6 - National Unit Cost Dependent: Final Pseudo R Squared 0.371 Reset Statistic 0.086

ANNEX VI (A) Summary

(Note that all R Squareds in this and in Previous Note are Adjusted R Squareds; note that these models have used an incorrectly calculated density variable)

A.VI.1 - Models without Minimum Distance but with Density

The pattern of variables entering the different models is shown in Table A.VI.1. Density always enters the initial OLS equations but with a strong negative coefficient; but in the multi-level runs it always enters with a weak positive coefficient. Here it is clear that the multi-level models provide much more stable results than OLS (with ten different variables entering the OLS models compared to five for the corresponding multi-level models). Once again this is consistent with the values of the reset test statistics which all show that the models using Ordinary Least Squares are very badly specified, whilst the models estimated within the multi-level framework are wellspecified.

In terms of the content / meaning of the variables with significant coefficients, each of the equations includes an income support variable, and an illness variable. Thus, the 'adults on combined income support' variable enters in 5 of the 6 equations and in the sixth it is replaced by the 'adults on income support' variable. In addition, the 'children in combined income support households' enters three of the equations. Similarly, the 'children without good health' enters 5 of the 6 equations and the 'children with limiting long term illness' variable enters the sixth.

	Ordinary Least Squares			Multi-Level models		
	Α	В	С	Α	В	С
Adults on Income Support	Y				Y	
Children without good health	Y		Y	Y	Y	Y
Children black ethnic groups	Y		Y	Y	Y	Y
Adults on combined income support		Y	Y	Y		Y
Children with Limiting Long Term		Y				
Illness						
Children in combined income support		Y			Y	Y
households						
Children in Lone Parent Households			Y	Y		
Children with LLTI			Y			
Children in Routine Occupations Households			Y			
Density				Y	Y	Y
R Squared	.629	.612	.729	.316	.365	.387
Reset Statistic	9.19	8.92	15.64	.274	.419	1.565

 Table A.VI.1 - Variables entering the different models (without minimum distance but with density)

A - Local Actual Cost; B - National Unit Cost; C - Numbers

Among other dimensions of deprivation, 'children in lone parent households' enters two equations and 'children in routine occupation households' enters only once, whilst the 'children in black ethnic groups' enters five of the six equations. The density variable appears only in the multi-level modelling. Overall, the initial combination (income support, poor health and ethnic minorities) appears to be a good balance of variables, although one may prefer to include the 'children in combined income support households' variable rather then the 'adults in combined income support households'. The role of density, however, is still deeply mysterious.

A.VI(A).2 - Conclusion

Including the supply variable (minimum distance to an area office)

None of the OLS models fit the data very well, and examination of the plots suggests that this is because the models do not really capture the high cost areas, but the square root models appears to be capturing the shape of the distribution of the residuals better than either the untransformed cost dependent or the logarithmic dependent⁹.

Essentially the test of specification in OLS is sensitive to the form of the dependent. If the clustering within local authorities is taken into account through using multilevel modelling, however, the runs with linear dependents are well-specified. We therefore recommended the two models in Table A.VI.2.

Without the supply variable (minimum distance to an area office)

The multi-level model provides a consistent picture of effects and is very wellspecified except with the numbers dependent and even the latter is much better specified than the OLS runs. The recommendation from the re-analysis without density in the ML models therefore is that one of those - or a combination of those should be used as the basis for a formula (see Table A.VI.3.). With density, the recommendation is for the unit cost model¹⁰.

	Mo	del I	Mod	lel II
	Unstand.	Std. Error	Unstand.	Std. Error
	Coeff.		Coeff.	
(Constant)	-191.1	376.8	601.6	335.3
MINDIST	-3.089	1.091	-3.448	0.9276
Lone parents on income support	41990	14790		
Children in income support/income			5594	1855
based JSA households				
Children without good health	19690	4848	10550	4566
Combined adult income support	13170	3738	15970	3280
Children in ethnic mixed households	10310	3885		
Children in black ethnic groups	4406	1641	5418	1240

Table A.VI.2	- Recommended	models with	Minimum Distance
--------------	---------------	-------------	------------------

⁹ The square root reduces the range of a variable much less than a logarithmic transformation. If the raw values are 10, 100 and 1000, the logarithms (to base 10) will be 1, 2 and 3, whilst the square roots will be 3.15, 10 and 31.5

¹⁰ An attempt was made to reproduce Table A.IV.7 with density in - i.e. retaining only child-related variables. The problem was that when the 'adults on income support variable' was omitted from the model shown in Table A.V.5, the 'children in black ethnic groups' variable dropped out. So that doesn't appear to work; the only model with child-only variables is A.V.7 *without* density.

	With	Density	Witho	ut Density
	Coeff.	Std. Error	Coeff.	Std. Error
(Constant)	178.7	326.2	371.9	325.2
Children without good health	11370	4558	10440	4574
Income support households	22420	4565		
Children in combined income	5328	1894	13580	943.8
support				
Children in black ethnic	4724	1366	4256	1225
groups				
Density	1.032	0.3737		
Final Pseudo R squared	0.365		0.363	
Reset Test Statistic	0.385		0.385	

Table A.VI.3 - National Unit Cost Dependant with and without Density

ANNEX VI.(B) - Ordinary Least Squares Models

Table A.VI.4 - Raw Cost Dependent: Starting and Ending RunsFinal R Squared 62.9% Final Reset Test Statistic 9.19

	Unstanda	ardised	St.	t	Sig.	Unstanda	rdised	St.	t	Sig.
	Coefficie	nts	Coef.			Coefficien	nts	Coef.		
	В	Std.	Beta			В	Std.	Beta		
		Error					Error			
Starting Constant	3363.6	294.21		11.43	.000	3363.6	294.2		11.43	.000
Ending Constant	-1474.4	425.24		-3.47	.001	-1489.2	411.8		-3.62	.000
Children in lone	5689.22	1901.4	.166	2.99	.003	14991.3	1397.0	.438	10.73	.000
par HHs										
INCSUP_F	30266.1	4772.9	.427	6.34	.000	16055.5	2983.4	.226	5.38	.000
Adult Asian	-5782.7	881.79	199	-6.56	.000					
ethnic groups										
Children without	24002.1	5239.2	.163	4.58	.000	10273.0	4289.3	.070	2.40	.017
good health										
HHs with 3 census	-	4557.3	274	-4.30	.000					
dep measures	19591.9									
Children Black	3603.28	1600.8	.092	2.25	.024	3613.8	1446.4	.092	2.500	.013
ethnic groups										
KROUTIN2	7115.57	1983.05	.141	3.59	.000					
Children mixed	10176.4	3882.18	.095	2.62	.009					
ethnic groups										
NEWDENS	869	.338	066	-2.57	.010					
JSA_F	19306.4	8643.14	.117	2.23	.026					

a Dependent Variable: CSTDEPAJ

	Unstanda Coeffic		St. Coef.	t	Sig.	Unstand Coeffi		St. Coef.	t	Sig.
	В	Std. Error	Beta			В	Std. Error	Beta		
Starting Constant	2344.3	266.7		8.79	.000	2344.3	266.7		8.79	.000
Ending Constant	-1418.9	401.3		-3.54	.000	-1175.6	320.3		-3.67	.000
Children Asian ethnic	-8693.4	1198.7	415	-7.25	.000					
groups										
ISJSA_FF	30682.4	3956.0	.641	7.76	.000	7739.5	3032.4	.162	2.55	.011
Children without good	11336.7	4973.0	.084	2.28	.023					
health										
KETHNW	5036.5	1037.2	.361	4.86	.000					
YPUNEMP2	-21142.0	5908.4	336	-3.58	.000					
KROUTIN2	19860.6	7052.5	.429	2.82	.005					
HHs with 3 census dep	-13165.8	3952.5	201	-3.33	.001					
measures										
Children with LLTI	21493.1	7737.4	.077	2.78	.006	28023	7058.8	.100	3.97	.000
NEWDENS	760	.291	063	-2.61	.009					
KROUTIN1	-16590.0	8097.4	295	-2.05	.041					
Prop of econ act 16-24yr	17434.8	7732.4	.163	2.26	.024					
olds unemployed										
ISKIDS3A	3883.0	1825.5	.170	2.13	.034	11782	1564.5	.515	7.53	.000

Table A.VI.5 - Unit Cost Dependent: Starting and Ending Runs

Final R Squared 61.2% Final Reset Test Statistic 8.92

a Dependent Variable:UNITCST2

Table A.VI.6 - Client Numbers Dependent: Starting and Ending RunsFinal R Squared 72.9% Final Reset Test Statistic 15.64

	Unstanda Coeffic		St. Coef.	t	Sig.		dardized icients	St. Coef.	t	Sig.
	В	Std. Error	Beta							
Starting Constant	26.95	1.663		16.21	.000	26.95	1.663		16.21	.000
Ending Constant	13.78	6.147		2.24	.025	-7.715	2.225		-3.47	.001
Children in lone par HHs	31.78	9.076	.149	3.50	.000	67.85	7.149	.318	9.49	.000
Children without good	87.75	26.87	.096	3.27	.001	56.02	26.02	.061	2.15	.031
health										
NEWDENS	00627	.002	077	-3.72	.000					
ISJSA_FF	178.26	23.21	.546	7.68	.000	84.85	11.11	.260	7.63	.000
YPUNEMP2	-159.18	33.83	371	-4.71	.000					
Children in HH where	-73.26	24.26	175	-3.02	.003					
noone ever worked										
Children Black ethnic	30.31	7.94	.124	3.82	.000	20.82	7.694	.085	2.71	.007
groups										
Children with LLTI	158.84	44.14	.083	3.60	.000	161.04	44.36	.084	3.63	.000
ISKIDS3A	40.81	13.04	.262	3.13	.002					
Prop of econ act 16-24yr	153.46	43.73	.211	3.51	.000					
olds unemployed										
HHs with 3 census dep	-111.79	24.95	251	-4.48	.000					
measures										
KROUTIN2	44.03	11.77	.139	3.74	.000	23.63	8.622	.075	2.74	.006
HHs with 1 census dep	-45.63	15.57	067	-2.93	.003					
measures										

a Dependent Variable: NDEP2

ANNEX VI.(C) - Multi Level Results

Table A.VI.7 - Linear Dependent CSTDEPAJ:

Final Pseudo R Squared 0.316 Reset Statistic 0.274

Variance	e Estimate	es	Coefficients				
Basic Mo	odel			Unstand. Coeff.	Std. Error	t	Sig.
LA_ID	3665000	542000	(Constant)	-942.2	382.3		
PCDIST	9510000	295500					
Final Mo	odel		Children in Lone Parent	5581	1672		
LA_ID	1684000	279200	Children without good health	19970	4881		
PCDIST	7320000	227300	Combined income support	17400	2634		
			households				
			Density	1.197	0.4331		
			Children in black ethnic groups	4143	1528		

Table A.VI.8 - National Unit Cost Dependent:

Final Pseudo R Squared 0.365 Reset Statistic 0.4109

Variance	Estimate	s	Coefficients				
Basic Mo	odel			Unstand. Std. t Coeff. Error		t	Sig.
LA_ID	3303000	476700	(Constant)	178.7	326.2		
PCDIST	7428000	230900					
Final Mo	del		Children without good health	11370	4558		
LA_ID	1477000	2338000	Income support households	22420	4565		
PCDIST	5335000	165700	Children in combined income	5328	1894		
			support				
			Children in black ethnic groups	4724	1366		
			Density	1.032	0.3737		

Table A.VI.9 - Client Numbers Dependent

Final Pseudo R Squared 0.387 Reset Statistic 1.565

Variance	Estimate	S	Coefficients				
Basic Mo	del			Unstand. Coeff.	Std. Error	t	Sig.
LA_ID	247.5	32.53	(Constant)	-0.1603	2.022		
PCDIST	261.5	8.13					
Final Mo	Final Model		Children without good health	96.12	25.53		
LA_ID	154.5		Combined income support households	96.41	18.93		
PCDIST	157.4		Children in combined income support	47.57	10.33		
			Children in black ethnic groups	25.87	8.084		
			Density	.007251	.00214		

Table A.VI.10 - National unit cost dependentFinal Pseudo R Squared 0.363 Reset Statistic 0.385

Variance	Estimate	es	Coefficients				
Basic Mo	del			Unstand.	Std.	t	Sig.
				Coeff.	Error		
LA_ID	3303000	476700	(Constant)	371.9	325.2		
PCDIST	7428000	230900					
Final Mo	del		Children without good health	10440	4574		
LA_ID	1423000	227000	Children in combined income	13580	943.8		
			support				
PCDIST	5408000	168000	Children in black ethnic groups	4256	1225		

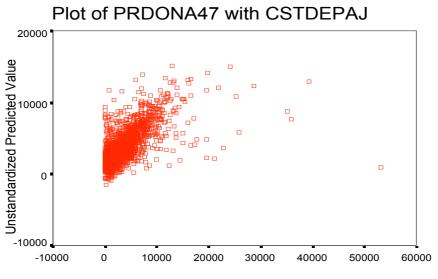
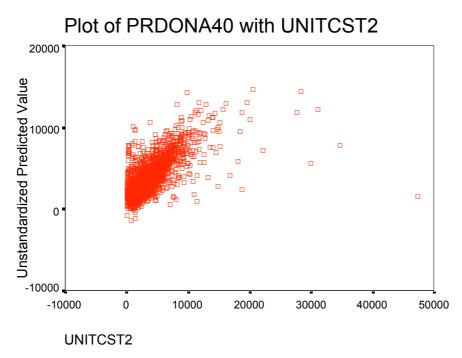

Annex VII

Table A.VII.1 - WARD LEVEL Descriptive Statistics

	N	Range	Minimum	Maximum	Sum	Mean		Std. Deviation	Variance	Skewness		Kurtosis	
LA_ID	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std.	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
108	20	11953.6	630.8	12584.4	98325.5	4916.3	Error 672.4	3007.2	9043485.4	0.865	0.512	0.876	0.992
116					478674.1	3626.3	226.3	2599.6		1.186		1.94	
210					64380.3	3576.7	491.4	2084.7					
210							559.5			0.299		-1.41	0.972
213					73335.1	3333.4	489.8					-0.851	
307							767.8						
319		11112.5	306.5		89428.9		713.6					-0.169	
319		12643.3			116736.2			3504.5				-0.103	
408		7536.8			69911.7	2913.0	356.6					2.706	
408		9146.8			360574.9			1963.4		-		1.514	
503													
506		14427.2			571894.5	3231.0	193.7	2194.9					
500					545978.6							36.417	
606		31944.2 12444.4					263.5			4.554			0.387
			208.6				178.3	2476.5					
607							207.1	2964.9					
615		11792.6			90317.8		536.9					2.438	
702				9806.9			681.3	2725.3					
722	_	9347.6			108190.9		428.5					1.131	
728	-	8470.2			98856.7	4942.8	511.4	2287.2			0.512	-0.138	
805		13818.1				2996.0	160.9					3.241	
811	-	5106.0			54658.8	3416.2	366.2	1464.8				0.241	
820		20395.3			620744.5		116.4	1957.4					
911	35	4309.9	192.0	4501.9	68974.0	1970.7	195.0	1153.7	1330981.2	0.477	0.398	-0.828	0.778
	2014	32019.4	32.10	32051.5	6194295.5	3075.6	57.71	2589.96	6707903.2	2.086	.055	10.675	.109

ANNEX VIII - Plots of Predicted Values against Dependents and Examination of Outliers

Plot for Raw Local Cost Dependent

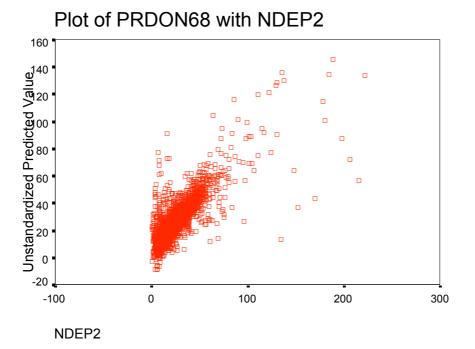

CSTDEPAJ

Cases weighted by POPFWT1

Table A.VIII.1 - Lists of Districts for Raw Local Costs

LA_I	D PCDI	ST CSTDEPAJ	IMDTOTAL
108.00 1	NE23	16468.47	21.87
205.00 1		16040.54	
215.00 H			63.98
306.00 N		16477.71	67.88
306.00 1		19510.01	49.58
316.00 1	L20	25942.43	51.79
407.00 0	CV7	53252.00	16.43
412.00		17710.56	18.05
414.00 \$	ST7	22835.87	16.20
509.00 1	LE1		58.61
512.00 1	NG1	25200.43	53.88
607.00 1	NR26	15004.00	15.24
607.00 1	NR34	17253.59	16.30
613.00 N	MK9	35895.63	27.41
624.00 H	PE7	19549.67	13.70
704.00 H	E9	35195.96	43.94
707.00 🕅	w10	19850.49	43.05
709.00 \$	SE9	15012.77	24.80
713.00 1	NW6	39319.30	30.53
713.00 🛙	w10	24100.47	43.05
724.00 1	N11	15421.30	21.45
724.00 1	N22	16113.31	35.74
724.00 1	N4	16009.35	38.42
724.00 1	N8	15270.17	30.23
735.00 H	E7	17134.17	36.29
820.00	TN17	21193.19	11.14
909.00 H			
913.00 H	PL1	19607.44	47.28
Number of d	cases	read: 28	Number of cases listed: 28

Plots for Unit Cost Dependent



Cases weighted by POPFWT1

Table A.VIII.2 - Lists of Districts for Unit Costs

LA ID	PCDIST	UNITCST2	IMDTOTAL				
_							
205.00	DN1	18472.92	55.95				
214.00	HU6	15137.99	43.60				
215.00	HU1	27733.07	62.60				
215.00	HU2	19563.43	63.98				
215.00	HU3	15254.45	57.17				
306.00	M11	15654.19	71.05				
306.00	M7	22115.90	49.58				
316.00	L20	29963.60	51.79				
407.00	CV7	47370.47	16.43				
509.00	LE1	28423.39	58.61				
606.00	LU2	16864.27	16.97				
624.00	PE7	18756.20	13.70				
704.00	E9	34702.49	43.94				
705.00	NW10	15015.43	32.73				
707.00	W10	16110.12	43.05				
713.00	NW6	31131.78	30.53				
713.00	W10	20607.94	43.05				
720.00	SE19	18054.90	26.01				
909.00	BS2	18791.94	50.09				
913.00	PL1	20033.41	47.28				
Number of	cases	read: 20	Number	of	cases	listed:	20

Plot for Numbers Dependent

Cases weighted by POPFWT1

Table A.VIII.3 - Lists of Districts for Numbers Dependent

LA_ID	PCDIS	r ndep2	IMDTOTAL					
205.00	DN1	106.90	55.95					
215.00	HU1	206.72	62.60					
215.00	HU2	130.32	63.98					
306.00	M11	105.13	71.05					
316.00	L20	152.34	51.79					
404.00	CV6	169.79	31.27					
407.00	CV7	135.09	16.43					
509.00	LE1	198.16	58.61					
703.00	SE10	129.96	30.68					
703.00	SE12	110.72	23.69					
703.00	SE13	222.46	28.78					
703.00	SE18	135.68	35.35					
703.00	SE2	137.74	32.82					
703.00	SE28	130.67	34.51					
703.00	SE3	122.22	25.45					
703.00	SE7	185.19	35.01					
703.00	SE8	188.56	36.41					
704.00	E9	215.68	43.94					
705.00	W11	148.09	27.59					
707.00	W10	116.65	43.05					
712.00	SW4	110.47	28.21					
712.00	SW8	103.88	33.44					
713.00	NW6	180.74	30.53					
713.00	W10	178.54	43.05					
713.00	W11	114.83	27.59					
713.00	W2	102.01	30.55					
909.00	BS2	124.89	50.09					
913.00	PL1	101.09	47.28					
Number of	cases	read: 28	Number	of c	ases	listed	: 28	

Annex IX

	Child n	umbers	Raw Loca	ll costs	National u Costs	ınit
	Corr.	Sig.	Corr.	Sig.	Corr.	Sig.
INCSUP F	.005	.802	.000	1.000	.006	.765
ISJSA FF	.000	1.000	002	.910	.000	1.000
ISKIDS3A	.005	.819	.001	.955	.000	1.000
LONPIS F	.000	.987	.001	.962	.014	.515
KIS F	.006	.782	.002	.915	.006	.771
JSA F	010	.636	005	.803	011	.590
INCJSA F	014	.517	008	.693	016	.440
KJSA F	011	.593	017	.432	056	.009
Residents in pcdist	011	.612	015	.494	017	.417
16-24yr olds economically active	.051	.016	.051	.017	.063	.003
Prop of econ act 16-24yr olds unemployed	013	.554	002	.922	014	.512
YPUNEMP2	031	.147	021	.322	043	.043
YPSTUDNT	.016	.440	006	.773	.019	.361
STUDENTS	056	.008	056	.009	045	.033
UNEMPL1	061	.004	054	.011	050	.018
Children in multiple occupancy dwellings	.006	.785	.010	.639	.029	.175
Children living on 5th floor or above	008	.692	004	.856	.020	.357
Children in housing with no CH	037	.082	030	.162	050	.018
Children in no car HHs	007	.758	005	.824	.017	.419
Children in 2car HHs	.011	.595	.019	.365	.002	.913
KNOWNOCC	.005	.801	.007	.731	.029	.175
Children in social rental	.020	.338	.022	.300	.046	.031
Children in lone parent HHs	.000	1.000	.000	1.000	.052	.014
Children not in families	003	.877	012	.580	.005	.810
Children in poor health	004	.869	.006	.783	.002	.926
Children without good health	.000	1.000	.000	1.000	005	.826
Children providing informal care	012	.583	.007	.734	020	.351
Children with LLTI	.000	1.000	.018	.407	.000	1.000
Children in HH where noone employed	014	.506	015	.486	009	.658
Children in HH where noone ever worked	025	.246	021	.319	030	.164
HHs with one of census dep measures	.003	.876	.020	.353	.038	.074
HHs with 2 census dep measures	014	.525	020	.355	020	.343
HHs with 3 census dep measures	022	.304	025	.249	029	.171
HHs with 4 census dep measures	025	.233	021	.321	031	.142
16-19 yr olds with no educ quals	.038	.078	.030	.153	.025	.237
ETHNW	041	.052	053	.013	074	.000
Adult mixed ethnic groups	.000	.982	.002	.941	.016	.454
Adult Asian ethnic groups	056	.008	073	.001	130	.000
Adult Black ethnic groups	005	.819	005	.822	.033	.119
Adult Chinese & other non white ethnic	013	.550	015	.477	.001	.967
groups						
KETHNW	034	.113	047	.029	065	.002
Children mixed ethnic groups	.013	.551	.010	.634	.028	.195
Children Asian ethnic groups	053	.013	071	.001	127	.000
Children Black ethnic groups	.000	1.000	.000	1.000	.038	.076
Children Chinese & other non white ethnic	008	.724	012	.583	.004	.855
groups		_				
MINDIST	079	.000	019	.378	056	.009
NEWDENS	042	.046	040	.058	030	.163
KROUTIN1	002	.942	.004	.840	.003	.900
KROUTIN2	.000	1.000	.004	.834	.005	.811

Table A.IX.1 - Correlations between independent variables and Residuals from equations

ANNEX X (A): High Gradient Models Take 1

(Authorities chosen based on ratio of range of dependent to its minimum within each authority)

	Unstandard Coefficients		St. Coef.	t	Sig.	Unstanda Coefficier		St. Coef.	t	Sig.
	B	Std. Error	Beta			Coefficient	115	Coci.		
Starting Constant	2344.3	215.9		10.86	.000	2344.3	215.9		10.86	.000
Ending Constant	-1623.8	588.2		-2.76	.006	-624.7	310.8		-2.01	.045
Children in lone	9957.9	2651.4	.409	3.76	.000	11680	1995.2	.480	5.85	.000
parent HHs										
LONPIS_F	25276.7	13191.3	.296	1.92	.056	22620	6980.1	.265	3.24	.001
Children in HH	-27749.8	4291.7	-1.424	-6.47	.000					
where noon										
employed										
KNOWNOCC	9432.1	2028.6	.613	4.65	.000					
ISJSA_FF	19103.3	6322.3	.628	3.02	.003					
Children without	15110.4	7609.9	.168	1.99	.048					
good health										

Table A.X1 - UNIT COSTS: Based on only 276 Postcode Districts from Following LAs 106,107, 112 114, 312, 319, 406, 413, 418, 613, 815, 820, 911. Final R Squared 62.3% Final Reset Test Statistic 1.65

a Dependent Variable: UNITCST2

Table A.X.2 - LOCAL RAW COST: Based on only 523 Postcode Districts from Following LAs: 106,107, 114, 214, 218, 312, 315, 317, 319, 320, 321, 322, 323, 406, 413, 416,417, 503, 609, 612, 614, 622, 812, 911

Final R squared 62.9% Final Reset Test Statistic 3.91

	Unstanda		St.	t	Sig.	Unstandard		St.	t	Sig.
	Coefficie	nts	Coef.			Coefficients	5	Coef.		
	В	Std.	Beta			В	Std.	Beta		
		Error					Error			
Starting Constant	2024.5	219.9		9.21	.000	2024.5	219.86		9.21	.000
Ending Constant	-2158.2	475.0		-4.54	.000	-1796.8	337.12		-5.33	.000
Children in lone	9106.0	2854.7	.351	3.19	.002	16690.5	1302.8	.644	12.81	.000
parent HHs										
Children without	35656.9	5950.1	.348	5.99	.000	11571.8	4757.2	.113	2.43	.015
good health										
Adult Asian ethnic	-4450.9	1079.8	236	-4.12	.000					
groups										
LONPIS_F	66991.6	9922.0	.706	6.75	.000					
HHs with 3 census dep	-	4306.7	282	-3.06	.002					
measures	13167.2									
Children in HH where	-8175.9	3560.2	383	-2.30	.022					
noone employed										

a Dependent Variable: CSTDEPAJ

ANNEX X (B) - High Gradient Models Take 2

(Authorities Chosen Based On Ratio Of Range Of Dependent To National Average Range)

Table A.X.3 - NATIONAL UNIT COST MODEL; But Based on only 352 Postcode Districts from Following LAs: 108, 205, 215, 217, 306, 316, 407, 412, 414, 510, 606, 621, 624, 703, 704, 705, 706, 713, 720, 723, 807, 817, 902, 912, 913

	Unstandardized Coefficients		St. Coef.	Т	Sig.	Unstandardized Coefficients		St. Coef.	Т	Sig.
	В	Std. Error	Beta			В	Std. Error	Beta		
Starting Constant	3394.43	494.70		6.862	.000	3394.43	494.7		6.86	.000
Ending Constant	388.6	946.05		.411	.682	-1031.3	889.3		-1.16	.247
NEWDENS	-4.143	1.053	300	-3.93	.000					
Children Black ethnic groups	24707.9	4344.6	.466	5.69	.000	25760.2	4465.7	.486	5.77	.000
INCSUP_F	56866.4	9348.4	.740	6.08	.000	37141.9	6264.5	.483	5.93	.000
Children with	80309.5	26285	.206	3.06	.002	81546.1	26794	.209	3.04	.003
LLTI										
YPUNEMP2	-26380.9	9391.6	312	-2.81	.005					

Final R Squared; Final Reset Test Statistic 4.16

a Dependent Variable: UNITCST2;

Table A.X.4 - LOCAL RAW COST MODEL; But Based on only 361 Postcode Districts from Following LAs: 108, 205, 217, 311, 404, 407, 412, 414, 509, 512, 606, 607, 613, 624, 704, 706, 713, 807, 820.

Final R Squared; Final Reset Test Statistic = 1.93

	Unstandardized		St.	Т	Sig.	Unstanda	rdized	St.	Т	Sig.
	Coefficien	nts	Coef.			Coefficie	nts	Coef.		
	В	Std.	Beta			В	Std.	Beta		
		Error					Error			
Starting Constant	3363.6	443.16		7.59	.000	3363.6	443.16		7.59	.000
Ending Constant	35.4	615.26		.058	.954	565.27	562.03		1.01	.315
KIS_F	18651.0	2730.0	.517	6.83	.000	16780.0	2691.5	.465	6.24	.000
Children Black	51672.8	9485.4	.788	5.45	.000	52019.9	9605.7	.793	5.42	.000
ethnic groups										
Children Asian	-6291.1	2828.2	149	-2.22	.027					
ethnic groups										
NEWDENS	-5.264	1.503	374	-3.50	.001					
Residents in	.04270	.016	.212	2.59	.010					
pcdist										

a Dependent Variable: CSTDEPAJ;

Table A.X.5 - NUMBERS MODEL; But Based on only 324 Postcode Districts From Following LAs: 205, 206, 215, 404, 407, 509, 623, 704, 705, 706, 711, 713, 723, 809, 812, 817, 902, 905, 914.

		lardized	St.	Т	Sig.		lardized	St.	Т	Sig.
	Coeff	icients	Coef.			Coeffi	icients	Coef.		
	В	Std.	Beta			В	Std.	Beta		
		Error					Error			
Starting Constant	36.47	2.720		13.41	.000	36.47	2.720		13.41	.000
Ending Constant	-1.86	6.381		292	.771	-8.850	6.324		-1.40	.163
LONPIS_F	951.91	134.26	.757	7.09	.000	853.57	113.96	.679	7.49	.000
Children with LLTI	598.88	175.64	.209	3.41	.001	573.20	178.86	.200	3.21	.001
Prop of econ act 16-	-236.21	78.53	231	-3.01	.003					
24yr olds										
unemployed										
Children in poor	883.16	349.46	.151	2.53	.012	897.53	358.23	.153	2.51	.013
health										
NEWDENS	01636	.006	231	-2.78	.006					
KJSA_F	275.31	122.09	.275	2.26	.025					

Final R Squared Final Reset Test Statistic 5.14

a Dependent Variable: NDEP2;

ANNEX XI - November

	Unstandardiz Coefficients	ed	Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
Run with dummies only					
(Constant)	2578.3930	297.1136		8.6781	0.0000
LANUM001	3106.6732	708.1873	0.0829	4.3868	0.0000
LANUM002	-563.2833	857.3467	-0.0120	-0.6570	0.5112
LANUM003	1731.1497	762.2950	0.0423	2.2710	0.0233
LANUM004	2622.5446	861.0861	0.0558	3.0456	0.0024
LANUM005	2517.5869	926.7899	0.0493	2.7165	0.0067
LANUM006	3600.8241	715.5101	0.0950	5.0325	0.0000
LANUM007	2206.1045	1151.3961	0.0341	1.9160	0.0555
LANUM008	2733.3281	939.6057	0.0527	2.9090	0.0037
LANUM009	1654.4717	959.1601	0.0312	1.7249	0.0847
LANUM010	1640.1806	847.9180	0.0355	1.9344	0.0532
LANUM011	1630.7257	585.0404	0.0554	2.7874	0.0054
LANUM012	2121.6318	1143.1288	0.0331	1.8560	0.0636
LANUM013	1491.7803	793.4444	0.0348	1.8801	0.0602
LANUM014	3260.4471	698.9128	0.0885	4.6650	0.0000
LANUM015	2222.3596	740.6317	0.0562	3.0006	0.0027
LANUM016	3409.7685	578.6015	0.1176	5.8931	0.0000
LANUM017	4818.3691	554.5484	0.1761	8.6888	0.0000
LANUM018	1009.9509	822.7451	0.0226	1.2275	0.2198
LANUM019	685.6315	612.2925	0.0220	1.1198	0.2629
LANUM020	2627.9416	506.9481	0.1093	5.1838	0.0000
LANUM021	3168.3894	677.5979	0.0893	4.6759	0.0000
LANUM022	941.3250	702.1441	0.0254	1.3406	0.1802
LANUM023	6614.3839	738.7430	0.1679	8.9536	0.0000
LANUM024	1552.7856	880.8347	0.0322	1.7629	0.0781
LANUM025	2588.2987	928.6352	0.0506	2.7872	0.0054
LANUM026	14.8363	552.9489	0.0005	0.0268	0.9786
LANUM027	1709.2054	916.2655	0.0339	1.8654	0.0623
LANUM028	2093.5329	715.3404	0.0552	2.9266	0.0035
LANUM029	1348.3811	840.7667	0.0295	1.6038	0.1089
LANUM030	7275.7517	617.4444	0.2304	11.7837	0.0000
LANUM031	2646.1935	754.8538	0.0655	3.5056	0.0005
LANUM032	3078.7201	774.2029	0.0740	3.9766	0.0001
LANUM033	4636.8773	794.8088	0.1080	5.8340	0.0000
LANUM034	2415.2425	710.0774	0.0643	3.4014	0.0007
LANUM035	813.1578	784.5950	0.0192	1.0364	0.3001
LANUM036	-806.1661	806.3206	-0.0185	-0.9998	0.3175
LANUM037	1261.5197	689.8306	0.0348	1.8287	0.0676
LANUM038	2084.0943	884.9424	0.0430	2.3551	0.0186
LANUM039	2348.7206	596.7247	0.0778	3.9360	0.0001
LANUM040	2832.5928	710.7809	0.0753	3.9852	0.0001
LANUM041	2205.6945	861.5384	0.0469	2.5602	0.0105
LANUM042	1911.1547	674.7705	0.0541	2.8323	0.0047
LANUM043	-115.9361	518.9003	-0.0047	-0.2234	0.8232
LANUM044	3365.4422	1006.3653	0.0602	3.3442	0.0008
LANUM045	338.0595	831.9114	0.0075	0.4064	0.6845

Table A.X1.1 - Full Results of OLS Regression with new dependent (NUNIT2CR)

				1	
LANUM046	1260.5285	437.4941	0.0667	2.8812	0.0040
LANUM047	3192.8136	886.0098	0.0657	3.6036	0.0003
LANUM048	3734.9934	992.7707	0.0678	3.7622	0.0002
LANUM049	634.9668	576.9853	0.0220	1.1005	0.2712
LANUM050	2858.5888	440.0435	0.1497	6.4962	0.0000
LANUM051	1536.4762	681.9440	0.0430	2.2531	0.0244
LANUM052	668.9102	695.6366	0.0183	0.9616	0.3364
LANUM053	2750.6398	693.8646	0.0753	3.9642	0.0001
LANUM054	1025.5793	817.0880	0.0231	1.2552	0.2096
LANUM055	3144.9069	724.4776	0.0817	4.3409	0.0000
LANUM056	2567.9315	756.3603	0.0634	3.3951	0.0007
LANUM057	-140.0381	488.7709	-0.0062	-0.2865	0.7745
LANUM058	3413.8087	768.1323	0.0828	4.4443	0.0000
LANUM059	780.9456	895.3686	0.0159	0.8722	0.3832
LANUM060	654.1880	561.9923	0.0235	1.1641	0.2445
LANUM061	61.5606	731.4741	0.0016	0.0842	0.9329
LANUM062	1364.4981	877.9919	0.0284	1.5541	0.1203
LANUM063	476.9357	531.0661	0.0185	0.8981	0.3693
LANUM064	858.6186	518.4151	0.0345	1.6562	0.0978
LANUM065	1030.7291	504.7486	0.0432	2.0421	0.0413
LANUM066	3688.6120	776.9975	0.0882	4.7473	0.0000
LANUM067	-431.9345	538.6643	-0.0164	-0.8019	0.4227
LANUM068	3975.8908	688.0396	0.1099	5.7786	0.0000
LANUM069	-1044.1223	1890.1307	-0.0096	-0.5524	0.5807
LANUM070	1499.8308	501.1957	0.0635	2.9925	0.0028
LANUM071	5144.1031	737.7548	0.1308	6.9726	0.0000
LANUM072	1132.6861	448.1627	0.0574	2.5274	0.0000
LANUM073	1546.5534	504.0700	0.0649	3.0681	0.0022
LANUM074	193.3358	540.3098	0.0073	0.3578	0.7205
LANUM075	579.1887	518.9401	0.0233	1.1161	0.2645
LANUM076	2914.2365	802.3758	0.0672	3.6320	0.0003
LANUM070	-91.5347	574.9069	-0.0032	-0.1592	0.8735
LANUM077	44.2186	772.2357	0.0011	0.0573	0.9543
LANUM078 LANUM079	-419.0021	1037.8162	-0.0072	-0.4037	0.6864
LANUM080	72.3569	938.0690	0.0012	0.0771	0.9385
LANUM080		938.0690	0.0014	4.0189	
	3957.1160				0.0001
LANUM082	2284.0854	999.1718	0.0412	2.2860	0.0224
LANUM083	-176.8251	997.6481	-0.0032	-0.1772	0.8593
LANUM084	-491.3386	924.8426	-0.0096	-0.5313	0.5953
LANUM085	3456.4758	915.8549	0.0686	3.7740	0.0002
LANUM086	1742.9397	928.6467	0.0341	1.8769	0.0607
LANUM087	-588.1512	559.6449	-0.0212	-1.0509	0.2934
LANUM088	2584.7193	889.0843	0.0530	2.9072	0.0037
LANUM089	2552.9125	915.2117	0.0507	2.7894	0.0053
LANUM090	6205.7786	779.3619	0.1479	7.9626	0.0000
LANUM091	4406.5323	776.7482	0.1055	5.6731	0.0000
LANUM092	6298.2518	992.7482	0.1143	6.3443	0.0000
LANUM093	7009.3283	919.2339	0.1385	7.6252	0.0000
LANUM094	6797.4771	1042.5616	0.1170	6.5200	0.0000
LANUM095	5578.5135	752.0075	0.1387	7.4182	0.0000
LANUM096		741 7114	0.1160	6.1924	0.0000
	4592.9455	741.7114			
LANUM097	4592.9455 5685.8970	763.4370	0.1388	7.4478	0.0000
LANUM097 LANUM098 LANUM099					

LANUM100	10560.5708	1055.7412	0.1793	10.0030	0.0000
LANUM100	655.1976	847.8029	0.0142	0.7728	0.4397
LANUM102	3431.5016	683.4390	0.0957	5.0209	0.0000
LANUM103	934.1197	783.5938	0.0221	1.1921	0.2334
LANUM104	1704.0120	738.2248	0.0433	2.3083	0.0211
LANUM105	823.1283	707.5163	0.0220	1.1634	0.2448
LANUM106	2563.3464	649.5576	0.0761	3.9463	0.0001
LANUM107	2238.6166	700.1883	0.0606	3.1972	0.0001
LANUM108	5753.5181	710.4523	0.1530	8.0984	0.0000
LANUM109	9570.9611	794.5171	0.2231	12.0463	0.0000
LANUM110	1023.1355	810.7746	0.0233	1.2619	0.2071
LANUM111	52.6765	792.9821	0.0012	0.0664	0.9470
LANUM112	1499.5730	747.9291	0.0375	2.0050	0.0451
LANUM112 LANUM113	2959.6899	798.9727	0.0685	3.7044	0.0002
LANUM113	2031.6795	979.1654	0.0374	2.0749	0.0381
LANUM114 LANUM115	1880.9044	870.5155	0.0395	2.1607	0.0308
LANUM116	2207.9568	680.9594	0.0618	3.2424	0.0012
LANUM117	-236.3546	923.3794	-0.0046	-0.2560	0.7980
LANUM117 LANUM118	4407.7730	777.2384	0.1054	5.6711	0.0000
LANUM118 LANUM119	1531.4811	1035.6807	0.0265	1.4787	0.1394
LANUM119 LANUM120	837.9503	453.1798	0.0203	1.4787	0.0646
LANUM120	388.5495	505.2440	0.0417	0.7690	0.4420
LANUM121 LANUM122	1206.8560	655.7228	0.0354	1.8405	0.0658
LANUM122 LANUM123	2076.8678	985.8207	0.0334	2.1067	0.0353
LANUM123	1107.6214	1010.2460	0.0380	1.0964	0.2730
LANUM124 LANUM125	1130.9975	429.3813	0.0620	2.6340	0.2730
LANUM125 LANUM126	4029.6095	867.3760	0.0850	4.6457	0.0000
LANUM120 LANUM127	2286.7381	831.7815	0.0830	2.7492	0.0060
LANUM127 LANUM128	743.4256	589.1156	0.0300	1.2619	0.2071
LANUM128 LANUM129	3989.2673	820.8759	0.0230	4.8598	0.2071
LANUM129 LANUM130	-501.8358	601.3571	-0.0164	-0.8345	0.4041
LANUM130	-150.9925	718.4053	-0.0040	-0.8343	0.8336
LANUM132 LANUM133	3593.4918	588.7793	0.1211	6.1033	0.0000
LANUM134 LANUM135	477.8260	552.7095 577.8237	0.0175	0.8645	0.3874
LANUM135 LANUM136	1134.1004	929.6790	0.0399	1.9974	0.2022
LANUM130 LANUM137	3760.3139	647.8210	0.0231	5.8046	0.2022
LANUM137 LANUM138	1012.4598			1.1575	0.2472
LANUM138 LANUM139	-942.3907	874.7296 750.5936	0.0211 -0.0235	-1.2555	0.2472
LANUM139 LANUM140	4936.0149	730.3930	0.1190	6.3939	0.2094
LANUM140 LANUM141	2566.4836	1052.6947	0.0437	2.4380	0.0000
Run with Variables	2300.4830	1032.0947	0.0437	2.4380	0.0149
	-1220.3770	358.9517		2 2008	0.0007
(Constant) LANUM001	3094.8782		0.0826	-3.3998	0.0007
LANUM001 LANUM002	-2169.4361	546.0673 663.0079	-0.0464	5.6676	0.0000
LANUM002 LANUM003	-1218.8575	592.0853	-0.0464	-3.2721	0.0011
LANUM003 LANUM004	1651.6901	664.4626	0.0351	-2.0386	0.0397
LANUM004 LANUM005	162.5739	720.1495	0.0031	0.2258	0.8214
LANUM005	1709.1648	555.2731	0.0032	3.0781	0.0021
LANUM006 LANUM007	-323.1967	892.8003	-0.0050	-0.3620	0.0021
LANUM007 LANUM008	-1010.2771	749.0528	-0.0050	-0.3620	0.1776
LANUM009	-322.8517	746.8543	-0.0061	-0.4323	0.6656
LANUM010	120.7570	661.3387	0.0026	0.1826	0.8551
LANUM011	428.7964	453.1614	0.0146	0.9462	0.3441

	1				
LANUM012	1197.6596	881.3909	0.0187	1.3588	0.1743
LANUM013	5.9741	612.1338	0.0001	0.0098	0.9922
LANUM014	2008.2082	539.4032	0.0545	3.7230	0.0002
LANUM015	854.7927	571.4560	0.0216	1.4958	0.1349
LANUM016	2058.6525	448.6401	0.0710	4.5887	0.0000
LANUM017	3013.2496	433.1445	0.1101	6.9567	0.0000
LANUM018	303.1771	635.8253	0.0068	0.4768	0.6335
LANUM019	63.4628	472.1224	0.0020	0.1344	0.8931
LANUM020	1991.2252	392.1976	0.0828	5.0771	0.0000
LANUM021	2344.1046	522.2974	0.0660	4.4881	0.0000
LANUM022	1808.6820	542.0036	0.0488	3.3370	0.0009
LANUM023	3798.8299	578.4285	0.0964	6.5675	0.0000
LANUM024	264.2885	681.2252	0.0055	0.3880	0.6981
LANUM025	2234.7153	715.4107	0.0437	3.1237	0.0018
LANUM026	1152.7914	427.4092	0.0423	2.6972	0.0071
LANUM027	2386.2161	705.6914	0.0473	3.3814	0.0007
LANUM028	951.6960	552.2130	0.0251	1.7234	0.0850
LANUM029	1209.8577	647.4816	0.0264	1.8686	0.0618
LANUM030	1927.9116	506.6709	0.0611	3.8051	0.0001
LANUM031	1274.0737	585.3145	0.0315	2.1767	0.0296
LANUM032	1414.2046	599.2584	0.0340	2.3599	0.0184
LANUM033	2160.7743	616.4412	0.0503	3.5052	0.0005
LANUM034	2726.0246	546.8324	0.0726	4.9851	0.0000
LANUM035	-178.8382	604.9017	-0.0042	-0.2956	0.7675
LANUM036	-724.9132	623.5091	-0.0166	-1.1626	0.2451
LANUM037	963.4085	531.5618	0.0266	1.8124	0.0701
LANUM038	-2187.7280	699.2191	-0.0451	-3.1288	0.0018
LANUM039	-2315.3332	487.1336	-0.0767	-4.7530	0.0000
LANUM040	1731.1083	556.3784	0.0460	3.1114	0.0019
LANUM041	407.6803	665.6620	0.0087	0.6124	0.5403
LANUM042	-232.8439	528.0022	-0.0066	-0.4410	0.6593
LANUM043	668.6356	401.4167	0.0269	1.6657	0.0959
LANUM044	816.2119	779.5695	0.0146	1.0470	0.2952
LANUM045	860.4576	642.2009	0.0190	1.3399	0.1804
LANUM046	952.8398	337.6432	0.0504	2.8220	0.0048
LANUM047	1684.9747	684.7070	0.0347	2.4609	0.0139
LANUM048	1919.3789	767.1731	0.0348	2.5019	0.0124
LANUM049	1503.0853	445.0676	0.0520	3.3772	0.0007
LANUM050	-143.0958	356.8652	-0.0075	-0.4010	0.6885
LANUM051	259.1019	526.9026	0.0072	0.4917	0.6230
LANUM052	212.2542	535.9421	0.0058	0.3960	0.6921
LANUM053	298.3219	538.5290	0.0082	0.5540	0.5797
LANUM054	1498.9381	631.6334	0.0338	2.3731	0.0177
LANUM055	1485.1960	559.3902	0.0386	2.6550	0.0080
LANUM056	784.3505	585.7221	0.0194	1.3391	0.1807
LANUM057	388.3398	376.4182	0.0171	1.0317	0.3023
LANUM058	1277.0906	593.7999	0.0310	2.1507	0.0316
LANUM059	1532.3877	689.7093	0.0312	2.2218	0.0264
LANUM060	1180.4909	432.5557	0.0424	2.7291	0.0064
LANUM061	1139.1170	564.0066	0.0293	2.0197	0.0435
LANUM062	210.6750	676.1745	0.0044	0.3116	0.7554
LANUM063	925.0129	409.0149	0.0359	2.2616	0.0238
LANUM064	1359.5728	400.0562	0.0547	3.3985	0.0007
LANUM065	1301.9186	389.5455	0.0545	3.3421	0.0008
			··· -		

	2454 7529	(02.2(1(0.0597	4.0752	0.0000
LANUM066 LANUM067	2454.7528	602.3616	0.0587	4.0752	0.0000
	482.3832	415.6364	0.0184		0.2459
LANUM068	2299.1880	531.7926	0.0636	4.3235	0.0000
LANUM069	889.7847	1455.0630	0.0082	0.6115	0.5409
LANUM070	1190.8334	386.1292	0.0504	3.0840	0.0021
LANUM071	2175.4816	576.8664	0.0553	3.7712	0.0002
LANUM072	2147.5063	349.1447	0.1089	6.1508	0.0000
LANUM073	1687.0059	387.8292	0.0708	4.3499	0.0000
LANUM074	1318.9804	417.6399	0.0500	3.1582	0.0016
LANUM075	1141.4774	399.7307	0.0459	2.8556	0.0043
LANUM076	1590.8983	619.8014	0.0367	2.5668	0.0103
LANUM077	1188.1086	446.5849	0.0413	2.6604	0.0079
LANUM078	-20.3634	594.3303	-0.0005	-0.0343	0.9727
LANUM079	1115.0285	800.5984	0.0193	1.3927	0.1638
LANUM080	1592.9777	723.0699	0.0308	2.2031	0.0277
LANUM081	3692.0363	760.3628	0.0676	4.8556	0.0000
LANUM082	1790.2032	772.8456	0.0323	2.3164	0.0206
LANUM083	1438.4830	771.7585	0.0260	1.8639	0.0625
LANUM084	1543.6980	715.2640	0.0303	2.1582	0.0310
LANUM085	2498.4695	705.5671	0.0496	3.5411	0.0004
LANUM086	1249.8563	715.2630	0.0244	1.7474	0.0807
LANUM087	524.7212	431.6439	0.0189	1.2156	0.2243
LANUM088	1196.7493	685.9937	0.0245	1.7445	0.0812
LANUM089	-945.3921	721.5324	-0.0188	-1.3103	0.1903
LANUM090	2834.2037	611.6432	0.0676	4.6338	0.0000
LANUM091	-753.5661	620.6747	-0.0180	-1.2141	0.2248
LANUM092	3011.6459	789.1044	0.0547	3.8165	0.0001
LANUM093	1379.0931	741.7304	0.0273	1.8593	0.0631
LANUM094	5319.5282	809.9314	0.0915	6.5679	0.0000
LANUM095	1768.1750	601.8392	0.0439	2.9380	0.0033
LANUM096	1599.9307	581.2006	0.0404	2.7528	0.0060
LANUM097	1358.4585	610.8523	0.0332	2.2239	0.0263
LANUM098	-3414.4731	665.1422	-0.0800	-5.1334	0.0000
LANUM098	4609.4922	639.6453	0.1042	7.2063	0.0000
LANUM100	7202.4770	842.0155	0.1042	8.5539	0.0000
LANUM100	-2523.5918	658.6126	-0.0546	-3.8317	0.0000
LANUM101 LANUM102		530.1608			
	3283.6180		0.0915	6.1936	0.0000
LANUM103 LANUM104	676.8129	605.9239	0.0160	1.1170	
	-1105.7128	587.4266	-0.0281	-1.8823	0.0599
LANUM105	883.2559	546.7331	0.0236	1.6155	0.1064
LANUM106	1275.6251	506.7648	0.0379	2.5172	0.0119
LANUM107	378.2974	551.2777	0.0102	0.6862	0.4927
LANUM108	3809.8847	557.0361	0.1013	6.8396	0.0000
LANUM109	4918.5692	640.6986	0.1147	7.6769	0.0000
LANUM110	753.3054	629.4901	0.0172	1.1967	0.2316
LANUM111	145.6965	611.9659	0.0034	0.2381	0.8118
LANUM112	821.5370	580.9394	0.0206	1.4142	0.1575
LANUM113	1362.6428	631.6235	0.0316	2.1574	0.0311
LANUM114	2837.7329	756.9233	0.0523	3.7490	0.0002
LANUM115	1318.1633	673.8839	0.0277	1.9561	0.0506
LANUM116	-2218.2678	548.6521	-0.0621	-4.0431	0.0001
LANUM117	944.1021	714.9230	0.0186	1.3206	0.1868
LANUM118	1834.6994	609.0852	0.0439	3.0122	0.0026

LANUM120	2409.2741	352.8853	0.1199	6.8274	0.0000
LANUM121	1302.5530	389.8665	0.0545	3.3410	0.0008
LANUM122	2102.3326	505.0174	0.0617	4.1629	0.0000
LANUM123	1802.5623	759.9064	0.0330	2.3721	0.0178
LANUM124	1374.7081	777.7877	0.0245	1.7675	0.0773
LANUM125	2244.0729	331.7823	0.1229	6.7637	0.0000
LANUM126	3162.9124	668.2647	0.0667	4.7330	0.0000
LANUM127	821.9585	644.6471	0.0182	1.2751	0.2024
LANUM128	740.9268	453.5026	0.0250	1.6338	0.1025
LANUM129	2764.7290	632.3448	0.0621	4.3722	0.0000
LANUM130	767.5109	464.4001	0.0252	1.6527	0.0985
LANUM132	-496.1764	552.8693	-0.0130	-0.8975	0.3696
LANUM133	3505.8369	454.1345	0.1182	7.7198	0.0000
LANUM134	1403.0758	428.1813	0.0515	3.2768	0.0011
LANUM135	1913.6761	445.5435	0.0661	4.2951	0.0000
LANUM136	2129.9599	716.3035	0.0416	2.9735	0.0030
LANUM137	2150.9496	500.2847	0.0641	4.2995	0.0000
LANUM138	1922.5377	674.3738	0.0402	2.8508	0.0044
LANUM139	31.4457	578.7265	0.0008	0.0543	0.9567
LANUM140	3754.0054	597.2768	0.0905	6.2852	0.0000
LANUM141	1558.9828	811.8164	0.0265	1.9204	0.0549
ISJSA_FF	872.8624	3508.8831	0.0162	0.2488	0.8036
ISKIDS3A	17347.1912	1813.2841	0.6737	9.5667	0.0000
Children with LLTI	25412.3412	7974.5229	0.0808	3.1867	0.0015
Reset Test Run					
ISJSA_FF	-5062.9039	3489.7557	-0.0942	-1.4508	0.1470
ISKIDS3A	7289.7605	2062.1303	0.2831	3.5351	0.0004
Children with LLTI	29658.5562	7817.5635	0.0943	3.7938	0.0002
RESETEX4	0.0001	0.0000	0.5739	9.5776	0.0000

Dependent Variable: NUNITC2R

REFERENCES

Aldgate, Jane and Stratham, June (2001) *The Children Act now: messages from research*. Stationery Office, London, UK

Beecham, J. (2000) *Unit Costs: Not Exactly Child's Play.* Joint publication from the Department of Health, Personal Social Services Research Unit and Dartington Social Care Research Unit.

Cleaver, H., Unell, I. and Aldgate, J. (1999) *Children's needs - parenting capacity: The impact of parental mental illness, problem alcohol and drug use, and domestic violence on children's development*, Stationary Office, London, UK

Jonathan Dickens, Darren Howell, June Thoburn and Gillian Schofield (2005), *Children Starting to be Looked After by Local Authorities in England: An Analysis of Inter-authority Variation and Case-centred Decision Making*, British Journal of Social Work Volume 37, Number 4, Pp. 597-617

Hardiker, P., Exton K. And Barker M. (1991) *The Social Policy Contexts of Prevention in Child Care*, British Journal of Social Work Volume 21, Number 4, Pp. 341-359

Kirton, D.(1995). '*Race', identity and the politics of adoption*. Working Paper 2, Centre for. Adoption and Identity Studies, University of East London. ...

Kirton D., Beecham J. and Ogilvie K. (2003) *Remuneration and performance in foster care*, University of. Kent at Canterbury

Moss P., Stratham J. and Dilton J. (2000), *The 'child in need' and 'the rich child': discourses, constructions and practice*, Critical Social Policy, Vol 20, No.2, pp.233-254

Selwyn, J., Sturgess, W., Quinton, D. and Baxter, K. (2004) Costs and Outcomes of NonED-Infant Adoptions, Bristol: Bristol University

Stone & Galbraith (2005) *How not to fund hospital and community health services in England*, J.Roy.Statist.Soc.A, vol. 169, pp 143-164

Tunstill Jane (2000) *Services for children in need from policy to practice* Studies in evaluating the Childrens Act 1989, 167

Ward, H., Holmes, L., Soper, J. and Olsen, R. (2004) *The Costs and Consequences of different types of Child Care. Report to the Department of Health*. Loughborough: CCfR Loughborough University;

Ref: DCSF-RW007

© University of York 2007

www.dcsf.gov.uk/research

Published by the Department for Children, Schools and Families