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Executive Summary 
 
Introduction  
 
The project looked at the development of competence in different aspects of maths and the 
effect of this on young people’s key stage results. It used data from a large longitudinal 
survey of young people (ALSPAC - the Avon Longitudinal Survey of Parents and Children) 
which has unique information on levels and patterns of understanding in mathematics at 
different stages of young people's progress through primary and early secondary school.  
 
Key Findings 
 

• Mathematical reasoning, even more so than children’s knowledge of arithmetic, is 
important for children’s later achievement in mathematics 

 
o Mathematical reasoning and knowledge of arithmetic (as assessed in year 4) 

make independent contributions to children’s achievement in mathematics in 
KS2 and 3. While both are important, mathematical reasoning is more 
important than knowledge of arithmetic for achievement in KS2 and 3. 

 
• Spatial skills are important for later attainment in mathematics, but not as important 

as mathematical reasoning or arithmetic 
 
o The influence of spatial skills (being able to rotate and manipulate shapes and 

imagine the results of these actions) play a role in achievement that is 
independent both of mathematical reasoning and arithmetic. This role 
increases from KS2 to KS3 as the teaching of geometry gains in importance 
and spatial competence is being tested. 

 
• Children’s attention and memory also plays a small but consistent part in their 

mathematical achievement 
 
o The ability to focus and maintain attention and to remember relevant 

information are important factors in mathematics achievement, even after 
controlling for individual differences in arithmetic and mathematical reasoning.  

 
• Children from high socio-economic status backgrounds are generally better at 

mathematical reasoning than their peers  
 

• Streaming, or ability grouping, in Primary school improves the mathematical 
reasoning of children in the top ability group, but the effect is small. It hinders the 
progress of children in the other groups. 

 
• Children’s self confidence in maths is predicted most strongly by their own 

competence, but also by gender (girls are less confident than boys) and by the ability 
group in which the child is placed. Children’s attainment, although largely determined 
by cognitive and social factors, is also influenced by their self-confidence. 
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Background 
 
Quite striking differences in mathematical achievement exist among children in the UK and in 
other countries. We need to be particularly concerned about pupils who do not succeed in 
mathematics at school and about the general level of mathematical skills in the population 
and the UK’s ability to compete in the world market with other technologically advanced 
societies.  
 
The more we can find out about differences in mathematical achievement and their causes, 
the more likely it is that we will also find ways of helping those who have difficulties in 
learning about mathematics.  
 
There are several possible reasons for differences among children in mathematics 
achievement. Some are cognitive: it is quite possible that differences in some underlying 
cognitive skill, such as the ability to reason about mathematical relations, or to calculate, or 
to pay sustained attention in the classroom and remember information, might determine how 
well and how badly children do in mathematics at school. Other possible reasons are social, 
such as the child’s own social background or the social composition of the school that the 
child goes to, or the influence of their experience at home or school. 
 
Still other reasons for differences in mathematics learning could be categorised as affective: 
among these are the children’s self-confidence in mathematics and in their ability to learn in 
the future. Each of these ideas is plausible enough, and yet up to now very little progress has 
been made in determining why children differ so widely in mathematics. 
 
Methodology 
 
There were four main research questions:  
 

1. Are there differences in the development of specific types of mathematical 
understanding and if so, how do these influence pupils’ progression across the Key 
Stage 1-3 period?  

 
2. Is the development of some mathematical skills more important for progression than 

others? 
 

3. Are there differences in the development of skills by gender, ethnicity, or socio-
economic factors, such as parents’ education or SES?  

 
4. How is development of understanding affected by children’s self perception of their 

own ability in maths?  
  
To answer these questions we used the large and impressive data bank collected in the 
ALSPAC study. This contains more than 14000 children born in Avon in the West of England 
in 1991- 92 and it has followed them over the whole of their childhood. The data include 
plentiful information on possible underlying cognitive differences, on the wide range of the 
children’s social backgrounds and on relevant affective variables, such as their self 
confidence in their own abilities.  
 
The number of children whose results we analysed depended on how many of them had 
been given the various cognitive, social and emotional measures that we included in each of 
the analyses. These numbers were always large: they varied from roughly 800 to roughly 
4000 children in the different analyses. 
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Very nearly all our analyses were about how well a particular predictor was related to an 
outcome measure that was given some time later. Our main outcome measures were the 
mathematics assessments at Key Stage 2, when the children were 11, and at Key Stage 3, 
when they were just 14. The predictor variables were cognitive, social and emotional 
measures, many of which were administered three years before the Key Stage 2 and six 
years before the Key Stage 3 measures. 
 
The most successful of the cognitive predictors were two mathematical reasoning tasks, one 
of which was given when the children were 8 and the other when they were 10 and again at 
12. All the other cognitive predictors were sub-tests of the WISC (Wechsler Intelligence 
Scale for Children). Our social measures were of the children’s self-perception and their 
parents’ SES: we used measures of the mother’s and the father’s social economic status, as 
defined by their occupations, and of the mother’s educational level. 
 
Our self-perception and self-confidence scores were based on a measure of how much the 
children liked maths in Year 3 and their self-perception as learners of maths in Year 4. These 
two measures were highly correlated (r=.83) even though they were given to the children in 
different school years. We integrated the information from these two measures into a single 
factor and treated this as a measure of a single concept, children’s self-confidence in 
mathematics.  
 
We analysed the relations between the predictor and the outcome variables in three main 
ways: 
 

1. Through multiple regressions in which we usually looked at the effect of different 
variables on the outcome measure. These regressions provide a measure of the 
contribution that each predictor variable makes to the outcome measure independent 
of all the other predictor variables. 

 
2. Through Structural Equation Models (SEMs) in which we measured the strength of 

the pathways between the predictors and the outcome measure and considered 
whether these pathways went directly from the predictor to the outcome measure or 
indirectly through another predictor variable. 

 
3. Through multi-level modelling in which we looked at the level at which social variables 

operated. One was at the level of the individual, and the other at the level of the 
school. Thus, our aim was to see how much of the difference in children’s 
mathematical abilities was due to differences in the children’s own SES status and 
how much to the SES composition of the pupils in the schools that they go to. 

 
Findings and Implications  
 
Mathematical reasoning, even more so than children’s knowledge of arithmetic, is 
important for children’s later achievement in mathematics 
 
Arithmetic here is defined as ‘learning how to do sums and using this knowledge to solve 
problems’, mathematical reasoning is ‘learning to reason about the underlying relations in 
mathematical problems they have to solve’ and can include both additive and multiplicative 
reasoning. 
 
Finding: Children’s ability to reason about mathematical relations was easily the most 
powerful predictor of children’s mathematical achievement, out of all the relevant cognitive 
measures in the ALSPAC data bank. It strongly predicted their mathematics achievement in 
Key Stage 2 and 3 assessments even after controls for the effects of differences in 
intelligence and calculation ability.  
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Implication: It is important to promote reasoning about mathematical relations in primary 
school. Children at risk for difficulties in mathematics can be identified early through 
mathematics reasoning assessments and receive early intervention, which would translate 
into better mathematics achievement later on. 
 
Finding: The contribution of calculation skills to mathematics achievement was modest but it 
was independent of reasoning. 
 
Implication: In the context of time pressures, more time should be allocated to developing 
children’s reasoning than to practising calculation skills. 
 
Finding: Mathematical reasoning scores were strongly related to the Key Stage mathematics 
assessments, less strongly but quite well related to the science assessments, and only 
weakly related to the English assessments. The relation between mathematical reasoning 
and the science assessments was stronger with the Key Stage 3 than with the Key Stage 2 
assessments. 
 
Implication: The teaching of both science and mathematics could benefit from an analysis of 
the forms of mathematical reasoning used in science and from the close coordination of the 
teaching mathematics and science at school. This coordination should be particularly 
beneficial in the education of older primary school children. 
 
Spatial skills are important for later attainment in mathematics, but not as important 
as mathematical reasoning or arithmetic 
 
Finding: Children’s spatial skills also predicted their Key Stage mathematics results, but to a 
lesser extent. Spatial skills were more important for Key Stage 3 than Key Stage 2 
achievement. Children’s achievement in the mathematics reasoning questions about space 
was very modest. 
 
Implication: Greater attention to children’s spatial reasoning in mathematics lessons should 
improve children’s achievements in geometry. 
 
Children’s attention and memory also plays a small but consistent part in their 
mathematical achievement 
 
Finding: Memory and attention also made a modest, but independent, contribution to 
children’s mathematical achievement in Key Stage 2 and 3. Some children may be at risk for 
difficulties in learning mathematics due to low performance in these cognitive factors. 
 
Implication: Recent developments in research that show that it is possible to improve 
children’s attention and memory through training. This should be considered as part of a 
personalised programme for children at risk. 
 
Children from high SES backgrounds are generally better at mathematical reasoning 
than their peers  
 
Finding: Individual children whose SES status is high are on the whole better at 
mathematical reasoning than those from lower SES homes, even if they are at the same 
school. The influence of SES at the individual level is similar to an effective educational 
intervention: it raises the average level of performance and reduces the variation between 
children, and consequently the proportion of children who show difficulty in mathematics.  
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SES also operates at the level of the school. Children, who go to Primary schools in which 
the SES composition is high, reason about mathematics more successfully than children at 
schools with a lower SES composition, whatever their own social background. 
 
Implication: The identification of a mechanism that mediates the connection between SES 
and mathematics achievements should help us to explain the effects of social background on 
mathematics achievement. In addition, improving children’s mathematical reasoning through 
instruction in school can make an important contribution to reducing SES inequalities in 
mathematics achievement. 
 
Streaming, or ability grouping,  in primary school improves the mathematical 
reasoning of children in the top ability group, but the effect is small. It hinders the 
progress of children in the other groups. 
 
When young people were in Year 3, teachers were asked in which stream or ability group the 
target children were placed for maths, but this did not distinguish between putting children 
into different classes according to ability (streaming), or grouping pupils by ability within 
classes (ability grouping). 
 
Finding: Streaming only improves mathematical achievement of children in the top ability 
group, but this effect is small. It actually hinders the progress of children in the other groups. 
It also influences children’s self-confidence in maths: children of the same level of ability 
placed in a lower ability group are less confident in their ability than those placed in a higher 
group. 
 
Implication: Schools need to consider alternatives to grouping children by ability levels if 
they want to promote higher achievement for children with all levels of ability. 
 
Children’s self confidence in maths is predicted most strongly by their own 
competence, but also by gender and by the ability group in which the child is placed.  
 
Finding: Children’s self-confidence in mathematics is predicted most strongly by their own 
mathematical competence but also, independently by their gender (girls are less confident 
than boys) and by ability group. Children’s attainment in Key Stage 2 and 3 mathematics, 
although largely determined by cognitive and social factors, is also influenced by their self-
confidence. 
 
Implication: It is important to pay attention to the affective aspects of children’s mathematics 
learning as well as to differences in their cognitive abilities and their social background. 
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1. Introduction 
 
The least controversial proposition that one could make about children’s success in learning 
mathematics is that it varies a great deal from child to child. Some children learn 
mathematics quickly and well; others make only slow progress and abandon the subject as 
soon as they are allowed to do so. These differences operate at different levels. They occur 
at the individual level, since even children at the same schools and from much the same 
social backgrounds vary a great deal from each other in their mathematical development 
(Dowker, 2005), but there are also striking and consistent differences between children in 
different countries (TIMS: PISA : Stevenson et al., 1985, 1986; Stigler et al., 1987), from 
different social backgrounds (Reyes & Stanic, 1988; Sacker, Schoon & Bartley, 2002) and, 
as we shall show later in this report, in different schools. Children’s success in mathematics, 
therefore, depends not just on their own abilities and motivations but also on their family, 
their school and their nationality. 
 
There are two good reasons to study why these differences occur. The more obvious of the 
two is that they are a serious cause for concern. Adults with low mathematics skills are more 
likely than those with low literacy skills to be unemployed; among those employed, low 
numeracy skills are a stronger predictor than low literacy skills of low levels of employment 
(Bynner & Parson, 2000). So, those who do poorly in the subject and have learned very little 
about it by the time that they leave school are likely to suffer at work as a result, especially in 
a technological society in which mathematical skills are increasingly needed (Noss & Hoyles, 
1992, 1996). For the same reason, society at large may suffer if there is a shortage of 
mathematical skills in the community. The generally declining number of pupils who pursue 
mathematics after the age of 16 in the UK suggests that this is a particular danger for this 
country. We urgently need to find ways of removing the difficulties that so many children 
encounter in mathematics lessons and thus to decrease the spread and improve the general 
level of mathematical abilities among schoolchildren. 
 
The second reason, a related one, for paying close attention to differences in mathematical 
success is as important as the first. It is that research on this issue could give us information 
that we badly need about the basis for children’s success or lack of it in mathematics. By 
studying the factors that are related to how well children do in mathematics, we should be 
able to identify the kind of experiences that children should have, and the kind of teaching 
that they should be given, to help them most effectively.  We can consider, for example, what 
underlying skills determine how well children do in mathematics:  how important is it for 
children to be able to take in and remember mathematical information well, to calculate 
efficiently and to reason about mathematical relations logically? We can study, too, the social 
and emotional bases of children’s mathematical success, such as their liking of mathematics 
and their self-confidence in their own mathematical ability and also the effect on their 
mathematical learning of their family background in socio-economic terms and of the school 
that they happen to be in. Convincing answers to any of these questions should make it 
easier to devise a better system for teaching mathematics than we have already. 
 
Many researchers have recognised the value of studying the causes of differences between 
children for this purpose, but the questions that they set out to answer are still open ones. 
The reason for this general lack of progress probably lies in the nature of the research that 
has been done so far. Much of it has dealt with children at one time only and this has made it 
hard to disentangle cause from effect among the many different variables that have been 
considered. Also, many of the studies have been of relatively small numbers of children in a 
restricted set of environments, with the inevitable consequence that we cannot be sure how 
representative their results are or even that they are relevant to the mathematical learning of 
other children brought up in different kinds of homes and educated in different kinds of 
schools. It has also been quite impossible in these small-scale studies to distinguish effects 
at the individual level from the effects at the social level, the effects for example of the child’s 
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own social background from the effects of the social composition of the school that he or she 
is attending. 
 
The Avon Longitudinal Study of Parents and Children (ALSPAC) offers an almost unique 
opportunity to surmount these research obstacles. This impressive project has accumulated 
a wealth of data on a representative group of slightly more than 14,000 children. The large 
body of data in the project includes information about the children’s educational progress, 
including their progress in mathematics, and their performance in several relevant 
psychological tests such as a well-known intelligence test and a test of mathematical 
reasoning that was given to a sub-sample of the children when they were 8-, 10- and 12-
years old. The size of the ALSPAC sample and the longitudinal nature of the data about 
them remove the difficulties that have hindered the progress of so much previous research 
on differences in children’s mathematical learning.  
 
In this report we shall describe the results of a set of analyses in which we were able to take 
advantage of the welcome opportunities offered by the ALSPAC data bank. All the analyses 
are about the ALSPAC children’s mathematics learning and the underlying variables that 
predict how successful they have been. 
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2. Background 
 
2.1 Cognitive issues 
 
Two kinds of cognitive issue will be analysed in this investigation: issues that are specific to 
mathematics learning, and issues that are related to children’s cognitive processes and skills 
in general and are not specifically mathematical. 
 
2.1.1  Learning mathematics: the nature of the task 
  
Learning mathematics in primary school involves learning about numbers, quantities and 
relations, and about the connections and distinctions between these three concepts. 
 
Numbers and quantities are not the same. A quantity can be represented by a number but 
we do not always need to measure a quantity and represent it by a number: we can compare 
one person’s height to another’s, for example, without any measurements or numbers.  
 
Thompson (1993) provided a framework which we shall use throughout this report when he 
distinguished between numbers, quantities and relations. According to him “Quantitative 
reasoning is the analysis of a situation into a quantitative structure - a network of quantities 
and quantitative relationships. A prominent characteristic of reasoning quantitatively is that 
numbers and numeric relationships are of secondary importance, and do not enter into the 
primary analysis of a situation. What is important is relationships among quantities” 
(Thompson, 1993, p. 165). Elsewhere, Thompson (1994) emphasised that “a quantitative 
operation is nonnumerical; it has to do with the comprehension (italics in the original) of a 
situation” (p. 187-188). 
 
The differences and links between quantities and relations are best understood if we 
consider an example. Figure 1 presents two problems and identifies the quantities and 
relations in each one. Both problems describe a quantity, the total number of books that Rob 
and Anne have, and the relation between two quantities, the number of books that Rob has 
and the number of books that Anne has. The relations between the quantities in Problem 1 
are described in terms of a part-whole structure, as illustrated in the diagram. Part-whole 
relations are additive relations. The relations between the quantities in Problem 2 are 
described in terms of one-to-many correspondence, as illustrated in the diagram; these are 
multiplicative relations. 
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Figure 1 - Two problems illustrating two types of relations between quantities 
 
 

(1) 
Together Rob and Anne have 15 books (quantity) 
Rob has 3 more books than Anne (or Anne has 3 books fewer than Rob) (relation) 
How many books does each one have? (quantity) 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One characteristic of relations, which distinguishes them from quantities, is that they have a 
converse: if A is greater than B, then B is smaller than A. So understanding relations involves 
understanding the connections between these two ways of thinking about the same relation.  
 
In order to learn mathematics, children must be able to coordinate their understanding of 
quantities with their understanding of relations, and must also distinguish between them. We 
can think about relations between quantities and represent the relation by a number even if 
we do not know what the quantities are. For example, if Paul plays a game of marbles and 
wins 7, then plays a second game and loses 1, and then plays a third game and loses 2, we 
know that at the end of the three games he has 4 more marbles than before. However, we do 
know not know how many marbles he has nor how many he started with.  
 
Numbers are signs, spoken or written. Each number sign is part of a network of signs (i.e. all 
other numbers), the meanings of which are interconnected. Children can be said to truly 
understand the meaning of numbers only when they understand, for example, that all sets 
with the same number of objects are equivalent and that if two sets are equivalent they 
necessarily have the same number of objects (Piaget, 1952). They should also understand, 

A + 3  = R 

A R 

(2) 

Together Rob and Anne have 15 books (quantity) 
Rob has twice the number of books that Anne has (or Anne has half 
the number of books that Rob has) (relation) 
How many books does each one have? (quantity) 
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for example, that 4 is one less than 5 and one more than 3, and that you only change the 
number in a set if you add or subtract elements. These meanings are part of the network of 
meanings in a number system. 
 
Numbers can be used to represent both quantities and relations. Quantities and relations are 
meanings for numerical signs and children must learn how to interpret numbers by 
connecting them to quantities and relations and must also learn how to represent quantities 
and relations by numbers.  
 
2.1.2 Theories about children’s mathematics learning 
 
Current hypotheses about the cognitive processes involved in children’s mathematical 
learning fall into two broad camps. One stresses the importance of numbers and procedures 
related to determining the number in a set, such as counting, remembering number facts and 
calculating. The other emphasises the significance of children being able to understand 
quantities and relations and being able to reason logically and imaginatively about them. 
 
The first type of theory, which focuses on numbers without considering quantities and 
relations, is best exemplified at pre-school age by the ideas of Gelman and Gallistel (1978). 
They argued that children are born in possession of innate, psychological mechanisms that 
eventually make it possible for them to learn, and to understand, the counting system with 
very little difficulty. With the help of these innate mechanisms children, who are learning to 
count, immediately apply a set of essential principles, such as the principle of cardinality, 
which Gelman and Gallistel define as the knowledge that the number of items in a set that 
they have counted corresponds to the last number that they produced in the count.  
 
Other researchers (Dehaene, 1997;  Butterworth, 2003;  Durand, Hulme, Larkin, & Snowling, 
20005) agree on the central importance of pre-school children’s knowledge of the counting 
system but, when considering school-age children, have turned to children’s success in 
comparing the magnitude of different numbers as a crucial index of mathematical ability, 
independent of or in coordination with knowledge of counting (Gelman & Butterworth, 2005). 
Still others (Geary & Brown, 1991) have argued that the ability to carry out simple 
calculations and to remember number facts lies at the heart of children’s mathematical 
successes and failures. Children first learn how to use numbers and carry out calculations 
and later, through their use, come to understand why the procedures work (i.e. the concepts 
on which they are based).  
 
All these theories agree in stressing the importance of the numerical procedures that children 
have to conquer at the start of their mathematical career at school without any reference to 
their understanding of quantities or relations. However, there is evidence that children can 
use these procedures without understanding their connection with quantities, and this shows 
that learning about numbers by themselves is not sufficient for learning mathematics in 
school. Fuson (1988), for example, showed that 3-years old children who satisfied Gelman’s 
criterion for using the cardinality principle continue to use the last number word in the 
counting sequence to say how many items are in a set even if the counting started from two, 
rather than from one. Freeman, Antonuccia and Lewis (2000) also assessed 3- and 5-year-
olds’ rejection of the last word after counting if there had been a mistake in counting. The 
children watched a puppet count an array with either 3 or 5 items, but the puppet 
miscounted, either by counting an item twice or by skipping an item. The children were asked 
whether the puppet had counted right, and if they said that the puppet had not, they were 
asked to evaluate the puppet’s knowledge of the cardinal for the set. Although all children 
had shown that they could count 5 items accurately, only about one third of the children were 
able to say that the answer was not right after they had detected the error. These results 
suggest that at least some children learn the counting words and a procedure for answering 
the question “how many?” relatively independently of their understanding of the connection 
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between counting and the quantity represented. After observing a puppet counting wrongly, 
about two thirds still believed that the cardinal for the set is the last word used in the counting 
string. 
 
There is also evidence that later, at school age, children continue to learn how to carry out 
operations with numbers - i.e. they learn number facts and computation - but may not know 
when to use them. In Thompson’s terms, they may not understand the relations between 
quantities in problem situations well enough to know how to use numerical operations to 
solve a problem. Teachers are well aware of this discrepancy between knowing how and 
when to do sums, and there is research that supports their practical knowledge: two 
problems that require the same computation may have radically different levels of difficulty 
because they differ in the demands that they make of children’s understanding of relations 
between quantities (e.g. Brown, 1981; Bryant, 1985; Carpenter & Moser, 1982; Thompson, 
1993). 
 
The fact that children often know about numerical symbols and procedures and yet fail to use 
them to solve problems about quantities and relations can be interpreted in different ways. 
One possibility is that children’s counting and calculation skills develop independently of their 
understanding of quantities and relations between quantities. According to this hypothesis, 
this number knowledge should be a predictor of children’s mathematics achievement 
independently of their ability to reason about quantities and relations. The latter should play 
no role in predicting mathematics achievement. An alternative hypothesis has been proposed 
by some researchers (e.g. Baroody & Gannon, 1984; Siegler & Crowley, 1991) who 
acknowledge that children often learn numerical procedures without understanding their 
conceptual basis. They suggest that, by learning procedures and practising them, children 
eventually understand the principles behind them.  
 
These distinct possibilities are worth testing in a longitudinal study because there is so far no 
evidence for the idea that children’s knowledge of number facts and calculations forms the 
basis for the development of their mathematical reasoning. A prediction from it about school 
children is that their knowledge of number signs and computation at an early age predicts 
their later understanding of quantities and relations and also their mathematics achievement. 
The present study will provide a test of this hypothesis. 
 
The second type of theory focuses instead on the importance of children’s reasoning about 
quantities and relations for mathematical learning, and assigns numerical procedures only a 
secondary and sometimes a very minor role. Piaget’s theory, of course, is the best known 
example (Piaget, 1952; Piaget & Inhelder, 1974; 1975) but many other researchers have 
since stressed the significance of understanding quantities and relations for children’s 
mathematics learning (e.g. Brown, 1981; Carpenter & Moser, 1983; Clements, Copple & 
Hyson, 2005 ; Ginsburg, Klein, & Starkey, 1998; Thompson, 1994; Vergnaud, 1979, to name 
only a few). This theoretical approach is at odds with the view that what matters is children’s 
knowledge of numerical procedures on every important point.  
 
Piaget’s central idea was that children’s understanding of what number really means 
depends crucially on their understanding of quantities and relations and on their ability to 
reason about these logically. This idea was not the reason why he was so heavily criticised in 
the 1970s and 80s. The aspect of his theory that caused all that controversy was his claim 
that this kind of reasoning is for the most part quite impossible for young pre-school children.  
There can be little doubt now that Piaget did to some extent underestimate young children’s 
reasoning abilities, but on the whole the controversy which surrounded Piaget’s work then, 
and which was the main reason for his relative fall from grace, left his central claim about the 
crucial importance of reasoning about quantities and relations for learning mathematics quite 
intact.  
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A report by Stern (2005) on some of the results of the impressive Munich longitudinal study 
of development did provide some interesting support for the importance of reasoning about 
relations and quantities for later mathematics learning. She showed that a measure of 
children’s understanding of the inverse relation between addition and subtraction when they 
were eight years old was a good predictor of their performance in an algebra test many years 
later in university, even after allowing for differences in  the participants’ intelligence. In fact, 
the measure of the children’s understanding of the inverse relation between addition and 
subtraction correlated as highly with their performance in algebra as the measure of the 
children’s general intelligence that had been obtained at the same time. 
 
Another longitudinal study, this time in the U.K., shows that differences between children in 
their understanding of quantities and relations in a measure obtained when they start school 
predict their mathematics achievement later (Nunes et al., 2007). The interval between the 
predictor (a measure of children’s understanding of relations) and the outcome (KS1 Maths) 
was certainly more modest than that in the Munich study because the children’s mathematics 
achievement was measured through their Key Stage 1 results, about a year and a half after 
the measure of mathematical reasoning had been administered. Nevertheless this is quite an 
important result because the study was longitudinal and appropriate controls were used in 
the analysis: the contribution of children’s reasoning to the prediction of mathematics 
achievement was still considerable even after controlling for the children’s specific 
knowledge of number and for general cognitive skills. The study was carried out with a small 
sample (59 children); evidence from a larger sample is urgently needed before one could 
draw implications for practice with great confidence. The present study will test this 
hypothesis longitudinally with a very large sample and over much longer intervals between 
the assessment of the children’s reasoning and the measures of their mathematics 
achievement. 
 
In summary, the evidence for both sets of theories regarding the prediction of mathematics 
achievement is sketchy. Longitudinal studies, which are so vital in this context, are so far 
very limited. The opportunities, therefore, that are provided by the ALSPAC study, are 
welcome and timely.  
 
2.1.3   The importance of general cognitive processes 
 
In the previous sections, we considered what children need to learn to be successful 
mathematics learners and the theories about the development of mathematics knowledge. In 
this section we consider general cognitive processes. No one would doubt that children’s 
intelligence plays a role in their mathematics learning. The question is which aspects of 
children’s intelligence have a specific connection with their mathematics learning. 
 
Measures of children’s intelligence assess a verbal and a non-verbal component. The 
connection between the verbal component and children’s mathematics achievement is 
usually high: children’s understanding of the teacher’s verbal explanations in any context 
affects what they learn from instruction. Their reading ability also affects their performance in 
problem solving when the problems are presented in written form. However, this connection 
is not specific and does not help us understand children’s mathematics achievement. In 
order to understand the connection between children’s intelligence and their mathematics 
achievement, we need to take the concept of intelligence apart and to identify specific 
components that influence mathematics achievement. After accomplishing this, we could ask 
whether it is possible for education to help children at risk for difficulties in mathematics due 
to low performance in these specific measures. 
 
Most people readily recognise that learning and using mathematics must draw on some 
general cognitive capacities. In order to use even the simple mathematics that we learn in 
primary school, we must be able to do several things: 
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• pay attention to information in whatever form it is given to us (for example, in a story 
about a situation); 

 
• pick out and remember the relevant parts of this information; 
 
• remember number facts and procedures that help us answer the question we want to 

answer. 
 
Researchers have proposed some hypotheses regarding the importance of these general 
cognitive processes for children’s mathematics learning. One of these hypotheses is about 
memory and attention. When children use a computation procedure in order to solve a 
subtraction or a division sum with four digits, for example, or when they solve an applied 
problem, they need to keep in mind the information in the problem and the steps to 
implement the solution, while monitoring what they have done and what still needs to be 
done. Working memory is the ability to keep information in mind and at the same time 
operate on it. It is therefore expected that working memory should affect how well they can 
keep numerical information in mind and thus their success with mathematical procedures 
and problem solving. The hypothesis that working memory determines children’s 
mathematics achievement has been proposed by many researchers both in the U.K. and in 
other countries (e.g. Hitch & McAuley, 1991; Towse & Hitch, 1995; Adams & Hitch, 1997; 
McLean & Hitch, 1999; Siegel & Linder, 1984; Siegel & Ryan, 1989) but so far there is little 
evidence for it from large scale longitudinal studies.  
 
Attention is most certainly involved in working memory but it can be measured relatively 
independently of memory. Most teachers would agree that some children make mistakes in 
solving problems that they should solve correctly because they do not pay sufficient attention 
to what they are doing. No specific theory links attention to mathematics learning but 
teachers’ practical knowledge can be analysed in the context of this study. Contemporary 
measures of children’s intelligence, such as the Wechsler Intelligence Scale for Children 
(WISC), show that measures of attention and memory are strongly related and seem to 
assess a single component, called “freedom from distractibility”.  
 
It has also been suggested that we must be able to use our visual and spatial skills in the 
process of attending to and interpreting information (see, for instance, a collection of papers 
edited by Zimmermann & Cunningham, 1991, which discusses the role of visualisation in 
algebra, calculus and computer programming). For example, if we are asked a question like, 
“The head teacher has 36 books to distribute to classes Pink and Yellow. There are more 
children in class Pink so she decides to give 6 more books to class Pink than to the Yellow 
class. How many books will each class receive?”, it should help to imagine from the start a 
pile of books for class Pink that is taller than the one for the Yellow class, and has 6 books 
more. The problem then becomes trivial: all we need to do is separate out the 6 extra books 
for class Pink and share the remaining 30 books equally between the two classes. 
Imagination in this case helps us solve the problem and we do not need to know anything 
about the order in which the operations of subtraction and division should be carried when 
solving problems. Thus, although spatial and visualisation skills are general cognitive skills, 
they might play a specific role in predicting children’s mathematics achievement.  
 
Our study includes analyses on whether differences between children in attention and 
memory influence their mathematics achievement later on. It also investigates whether 
children’s spatial and visualisation skills are specific predictors of mathematics attainment at 
a later age. The importance of testing these hypotheses through long term and large scale 
longitudinal studies cannot be over-emphasised. 
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2.2 Social and emotional issues 
  
Cognitive factors are arguably central to children’s mathematics learning but cognition is not 
the only factor that influences children’s learning, which is not free from social and affective 
influences. In this section we discuss social influences connected to children’s own 
characteristics (social background, ethnicity and gender), connected to school practices 
(streaming) and affective factors in mathematics learning (children’s self-confidence in 
mathematics). 
 
2.2.1.  Socioeconomic status and mathematics learning 
 
There is a strong relationship between school children’s social background and what they 
achieve in mathematics at school, both at early stages (Ginsburg & Russell, 1981) and later 
on (Lee & Bryk, 1989; Reyes & Stanic, 1988; Sacker, Schoon, & Bartley, 2002; Tate, 1997). 
As in other school subjects, so in mathematics, children from more prosperous families do 
better than children with less prosperous backgrounds in the classroom and in exams. This is 
a consistent and also a familiar correlation, but it raises some unanswered questions.  
 
One is about mediators: there must be a channel of some sort between children’s social 
background and their mathematical success, some factor or factors associated with social 
background that lead to children from high SES families having relatively more success in 
mathematics than others from lower SES backgrounds.  
 
Several related possibilities have been discussed in the literature. One is that children from 
different backgrounds come to school with different sorts of mathematical knowledge. 
Children from lower SES know some things about mathematics, those from higher SES know 
other things, and these different forms of knowledge affect what they learn in school and how 
they perform in school tasks. Ginsburg and Russell (1981) have indeed observed these 
different levels of performance between children from different social backgrounds on various 
mathematical tasks at pre-school level. However, their study did not allow for conclusions on 
the influence of these different skills in relation to the children’s mathematics learning in 
school because it was not a longitudinal study. 
 
A second possibility is that the link between SES and mathematical achievement happens as 
a result of associated differences in what is often called “cultural capital”. There might be 
differences in the material that supports mathematical learning at home, such as access to a 
computer, or the presence of a clock, books, comics and games (e.g. Snakes and Ladders) 
at home, and the activities that are associated with these objects. For example, learning to 
use a computer involves learning to follow rules in a rigorous order, a sort of knowledge that 
could prepare children for learning computation algorithms in school. Children who have a 
watch or a clock in their bedrooms might learn more about time than those who do not, and 
thus have an advantage in school. Previous research (Siegler & Ramani, 2009) has shown 
that children’s performance in some number tasks was improved by an intervention in which 
an experimenter played a board game like Snakes and Ladders with the children: having 
board games at home, therefore, might give children a head start in number tasks. These 
differences in the cultural capital might be the underlying reason why children from more 
prosperous families do relatively well in mathematics. 
 
A third possibility, which has received great attention from sociologists, is the relationship 
between the overt and hidden curricula of schools - i.e. the stated and un-stated, or explicit 
and implicit goals of mathematics education. Apple (1979), for example, argued that a school 
curriculum always represents a selection from a much broader knowledge base, and that 
students from higher SES backgrounds may benefit more from the choices that are made 
about the form and content of school curricula than those from lower SES backgrounds. This 
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benefit can operate in two ways. First, achievement tests may draw more on the sorts of 
knowledge developed by higher SES students, and thus they would perform better. This is 
the argument formulated when one asks whose knowledge gets into tests. Second, the un-
stated, implicit curriculum may include more of the sort of knowledge developed outside 
school by students from higher SES backgrounds, leaving students from lower SES 
backgrounds to fend for themselves in achieving this sort of knowledge, exactly because it 
remains implicit. 
 
Finally, social background might have a direct effect on some underlying ability which in turn 
influences how well children do in mathematics at school. This kind of mediation seems quite 
plausible if one accepts that relatively well educated parents may be readier than others to 
discuss mathematical ideas and to promote mathematical thinking with their children at 
home. This kind of informal interaction, if it has any effect at all, is likely to encourage 
children to think about quantities and mathematical relations and therefore to reason 
mathematically. Thus, children’s mathematical reasoning might be the mediator between 
social background and children’s mathematics. 
 
These are not alternative hypotheses and it is quite likely that they operate together. For 
example, if children from higher SES backgrounds have more opportunities to engage in 
informal interactions that promote mathematical reasoning in school and if schools leave 
much of the learning about mathematical reasoning implicit in the curriculum, then children 
from lower SES background would start school at a disadvantage and also have fewer 
opportunities to develop the reasoning skills which they need to develop in order to learn 
better the mathematics that they are taught explicitly. 
  
One must also consider that SES levels influence children’s mathematics achievement at the 
level of the school as well as at the individual level. The average social class of the school 
has an effect on students’ achievement above and beyond the effect of the individual’s social 
class (Alexander, McDill, Fenessy, & D'Amico, 1979; Melhuish, Romaniuk, Sammons, Sylva, 
Siraj-Blatchford, & Taggart, 2006; Opdenakker & Van Damme, 2007). So it is quite possible 
that the social composition of the pupils in a school might influence the underlying abilities 
that form the basis for learning mathematics in school. In other words, whatever their own 
social background, children might be more likely to develop mathematical reasoning well in a 
school in which the average SES level is high than in one with a lower average SES 
composition. As far as we know, there is evidence for the effect of schools’ different social 
compositions on mathematics achievement in standardised assessments (e.g. Lee & Bryk, 
1989; Reyes & Stanic, 1988; Sacker, Schoon, & Bartley, 2002; Tate, 1997) but not in 
assessments of mathematical reasoning that would explain differences in the achievement 
measures. 
 
This study will consider SES effects on children’s mathematics reasoning both at the 
individual and at the school level. School level influences can be such that all children in a 
school where the mean SES is high benefit equally from being in the school but it is also 
possible that the social composition of the school interacts with the individual’s own SES 
background, and that some children benefit more than others from being in a school where 
the mean SES is high. If the effects of school composition differ for children from different 
individual SES backgrounds, there will be different slopes for the linear functions that 
describe the relation between individual SES and achievement across schools with different 
social compositions. A multilevel approach to the analysis of SES effects on mathematics 
reasoning is thus important and will be used in this study. 
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2.2.2 Ethnic background 
  
Different studies have documented that there is a gap between students from minority ethnic 
groups and those from the dominant group in the society in school achievement in general 
and also specifically in mathematics (e.g. Secada, 1992; Tate, 1997). Although SES and 
ethnic background are confounded in many studies, ethnic differences in mathematics 
attainment persist even when SES is controlled for (Green, Dugoni, Ingels, & Cambum, 
1995). 
 
There is only a reduced percentage of children in the ALSPAC sample with minority ethnic 
backgrounds. This study will investigate effects of ethnicity on mathematics learning as far as 
possible within the sample and using controls for SES background. 
 
2.2.3 Gender 
  
The study of gender differences in mathematics achievement captured much interest from 
researchers for about two decades but is has attracted less attention in this last decade 
because it has become progressively clear that, of the groups that define inequalities in 
mathematics learning - gender, ethnic origin and social background - gender has the least 
impact. Lubienski and Bowen (2000) carried out a survey of the studies that analyse group 
differences in mathematics attainment and report that gender differences were the focus of 
the largest number of publications about inequalities in education during the 80s and 90s; 
they located 323 articles about gender effects on mathematics attainment, 112 about effects 
of ethnicity and 52 about SES effects. After some speculation on the importance of gender 
differences in brain structure and how the age of adolescent maturation could influence 
mathematics learning (see Leder, 1992), a sort of speculation that made gender into a 
biological variable, gender has become firmly placed in the realm of social influences on 
mathematics learning. 
 
In his review of research on gender, Tate (1997) concluded that, although males tend to 
perform better than females on standardised tests, effects tend to be small and generally 
non-significant. Lockheed, Thorpe, Brooks-Gunn, Casserly, and McAloon (1985) observed 
that the interaction between gender and ethnicity was more important than gender effects per 
se, and criticised previous research in which this interaction had not been analysed. 
 
In this study, we will analyse both gender effects and the interaction between gender and 
ethnicity. The variation in ethnic background is restricted in the ASLPAC sample, but there is 
still a sufficiently large sample for an analysis to be carried out. 
 
2.2.4  The effects of streaming on mathematical reasoning 
 
Slavin (1990, p. 472) defines streaming as between-class ability groups, an arrangement in 
which students are placed in different abilities across all subjects. This form of ability 
grouping is found more commonly in secondary schools; primary schools tend to use within-
class ability grouping, which allows for the assignment of the same student to different ability 
groups in different subjects. In spite of his recognition of this difference, in his review of the 
effects of streaming, he included both between-class and within-class ability grouping in his 
analysis (p. 475).  Slavin (1990) and Boaler (1997) carried out excellent reviews of the 
impact of ability grouping on mathematics learning. Both reviews led to the same conclusion: 
that streaming only benefits students placed in the top ability group and, even so, just 
marginally so. 
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In the studies reviewed, the evidence is based on achievement tests, without the benefit of a 
measure obtained independently which could be used to assess whether students with the 
same level of measured ability but placed on different streams for mathematics teaching 
perform differently.  
 
In this study, it will be possible to carry out an analysis of the effects of streaming on 
students’ achievement controlling for an independent measure of their mathematical 
reasoning. When the participants were in Year 3, the teachers were asked in which stream or 
ability group the target children were placed for maths and for English. Their response with 
respect to maths could either indicate that the school did not use streaming or the stream or 
ability group in which the child was placed. This information will be used in subsequent 
analyses. The expressions “stream” and “ability group” will be used interchangeably, as they 
were used in the questionnaire, but streaming will be used more often for brevity. 
 
2.2.5.  Affective factors: children’s self-confidence in mathematics 
 
The DCSF publication “Making Good Progress in Key Stage 3 Mathematics” reports that 
pupils who struggle to progress from Level 3 to 5 in mathematics have a low self-concept as 
mathematics learners: they feel that they were never able to do maths and have become 
used to not understanding mathematics. This makes it important for research to describe 
what influences children’s self-perception as mathematics learners and also how it relates to 
mathematical ability. It is possible that low self-concept as a mathematics learner is a result 
from low achievement. It is just as plausible that the reverse is true: low self-confidence 
results in low achievement. These are not necessarily alternative hypotheses: both may be 
true, with achievement and self-confidence reinforcing each other over time.  
 
Past research has shown that at least four factors influence individual differences in 
children’s self-confidence in maths:  
 
• their mathematics competence (Marsh, 1986; Pretzlik, Olsson, Nabuco, & Cruz, 2003); 
 
• others’ (i.e. their teachers’ perception and their peers’) perception of their ability 

(Crocker & Cheeseman, 1991; Dermitzaki & Efklides, 2000; Pretzlik, Olsson, Nabuco, & 
Cruz, 2003); 

 
• gender (girls are reported to have less confidence in their mathematical ability than 

boys and to attribute their success more to luck than to ability, whereas boys do the 
opposite; Fennema, 1977; Fennema & Peterson, 1985); 

 
• their verbal ability (past research shows a small negative correlation between verbal 

ability and self-perception as a learner of maths; Marsh, 1986; Marsh & Yeung, 1997; 
Skaalvik & Rankin, 1995). 

 
There are conflicting results concerning the importance of these affective factors in the 
prediction of later achievement. Mortimore, Sammons, Stoll, Lewis and Ecob (1988) found 
that attitudes and achievement were almost independent of each other whereas Pajares and 
Miller (1994) found that pupils’ attitudes were related to achievement. It is quite possible that 
these discrepancies result from the use of different measures: in the study by Mortimore et 
al., the measures were of attitudes towards the subject and in the study by Pajares they 
included a component of self-perception. 
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In this study, we investigate the relative importance of the four factors listed earlier on for 
predicting children’s self-confidence in maths. We also investigate whether children’s self-
confidence makes a contribution to explaining later achievement after controlling for cognitive 
measures that predict achievement. The ALSPAC data base offers a unique opportunity to 
study these factors longitudinally: at approximately the same time, the children were given 
measures of mathematical reasoning, self-perception as learners of mathematics, and their 
liking of mathematics. These measures preceded the Key Stage 2 and 3 assessments, thus 
providing the opportunity of an analysis of their power in a longitudinal prediction. 
 
2.3 Summary 
 
Children vary considerably in what they achieve in mathematics at school. The 
consequences of this wide variation are significant both for the children themselves and for 
society, given both the importance of mathematical ability for progress in education and 
employment and also the competitiveness of contemporary societies in the global economy. 
 
The variation in children’s mathematical abilities is related to personal factors as well as to 
group membership. Personal factors include cognitive, social and affective differences. We 
distinguished between specific cognitive abilities, related to the learning of mathematics in 
itself, and more general information processing abilities that might influence mathematics 
learning. Social factors are mostly determined by group membership (SES background, 
gender, ethnic group, membership in a specific school). Affective aspects of learning 
mathematics take account of children’s self-confidence as learners of mathematics and its 
relation to achievement: it is hypothesised that ability and self-confidence influence each 
other, reinforcing each other over time.  The ALSPAC data base offers a unique opportunity 
for explaining differences between children in mathematics achievement, considering all of 
these aspects in a single study.  
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3. Method 
 
3.1 The ALSPAC Sample 
 
The Avon Longitudinal Study of Parents and Children (ALSPAC) project has accumulated a 
wealth of data on slightly more than 14,000 children, born between April 1991 and December 
1992 in the geographical region in the West of England that was covered at the time by the 
Avon Health Authority. The sample is not only a large but also a representative one, since it 
includes over 80% of the children born in the area during the 21-month recruitment period.  
The large body of data in the project includes a great deal of information about the children’s 
educational progress, including of course their performance in mathematics and in several 
relevant psychological tests, such as a well-known intelligence test, the Wechsler Intelligence 
Scale for Children (WISC; Wechsler, 1992), a test of mathematical reasoning that was given 
to a sub-sample of the children when they were 8-, 10- and 12-years old, and a measure of 
children’s self-perception as learners of mathematics. The data bank also provides 
information about the children’s social background and about their schools  
 
3.2  The cognitive measures 
 
3.2.1  Mathematical Reasoning - the Year 4 and the Year 6/8 tasks 
 
The aim of the Mathematical Reasoning tasks was to assess children’s understanding and 
use of the quantitative relations, which we discussed in the introduction, in order to solve 
mathematical problems. The tasks were originally devised by Nunes and Bryant for the 
ALSPAC study. Our view, when we designed the items in these tasks was that it was highly 
likely though not certain that the importance of reasoning about mathematical relations in 
mathematical learning is seriously underestimated in mathematical education. However, we 
recognised that there was no decisive evidence to support that view, and that the ALSPAC 
study could establish, one way or the other, the part that mathematical reasoning plays in 
children’s learning.   
 
We designed two Mathematical Reasoning tasks. One, containing 17 items, was given to 
school-children in Year 4 (N= 5275, mean age 8 years 9m). The other, containing 35 items, 
was given to children in Year 6 (N= 7981, mean age 11 years 2m) and in Year 8 (N= 2755, 
mean age 12 years 8m).  
 
The aim of both tasks was to assess children’s reasoning about quantities and the relations 
between quantities in mathematical problems independently of their computation skills. None 
of the items in these tests contained difficult calculations; the children had to reflect on the 
relations between quantities in each item in order to decide how to solve the problem. All the 
items were presented with the support of drawings; the children could actually use counting 
to solve many of the problems if they did not know the number facts that might be used in the 
solution. All the problems were presented orally by the teachers in order to avoid an undue 
influence of reading difficulties on the children’s performance. 
 
Thus the calculation that is needed in the problem in Figure 2, which was an item in the 
Mathematical Reasoning test given in Year 4, is not at all difficult and well within the range of 
calculations that 8-year-olds can do. The taxing part of this item is in reasoning that an 
addition is needed to solve the problem.  
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Figure 2 - An additive reasoning problem in the Year 4 Mathematical Reasoning Task 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A similar item was included, in which the two friends started walking from the house and in 
the same direction. In this second item, in spite of the similarity in the language of the 
problem, the relation between the quantities (how far the friends are from each other) is 
different and the problem is solved by a subtraction. 
 
Three types of item were included in the Year 4 Mathematics Reasoning Task: additive 
reasoning items about quantities, additive reasoning items about relations, and multiplicative 
reasoning items about quantities. The assessments used in Years 6 and 8 included six types 
of item: additive reasoning items about quantities; additive reasoning items about relations; 
multiplicative reasoning items about quantities; multiplicative reasoning items involving 
relations (i.e. proportions); items about spatial reasoning and items about fractional 
quantities. Our hypothesis is that, although these different items can be distinguished in 
terms of their content, they measure the same concept, Mathematics Reasoning. Examples 
of items in these tasks are presented in Appendix A. 
 
Analyses of their internal consistency using the Cronbach’s α showed that on all three 
occasions the mathematics reasoning tasks had good levels of inter-item reliability: .74 at 
Year 4 (N=5275), .89 at Year 6 (N=7881) and .91 at Year 8 (N=2755).1 This high internal 
consistency justifies the addition of all the items into a single score in some of the analyses. 
 
Exploratory factor analyses, followed by confirmatory analyses in structural equation models, 
were carried out by entering scores for each of the sets of items described previously in this 
section. In these analyses, a single factor was identified, again justifying the use of a total 

                                                 
1 The Year 8 Mathematics Reasoning Task was only given to the cohort of children born between 1st September 
1991 and 31st August 1992, so the number of participants in this assessment is considerably smaller although it 
is still a large sample. 

 

Two friends were walking on the beach. They started walking 
from the house. The boy walked 3km one way. The girl walked 
5km the other way. How far apart are the two friends? 
 
Write your answer in the empty box. 
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score. The details of these analyses will be presented later, when the structural equation 
models are described. 
 
3.2.2 The Wechsler Intelligence Scale for Children (WISCIII) 
 
The WISC is very well-known, and is probably the most widely used general intelligence test 
for children. It was administered to 7354 children in the ALSPAC sample, whose mean age 
at the time was 8 years 7m. (SD 3.92). It consists of 12 subtests, one of which is a measure 
of children’s knowledge of arithmetic.  
 
This arithmetic subtest contains a series of very simple word problems, which pose no 
conceptual difficulties to children aged about 8 years. For example, “John had 4 pence and 
his mother gave him 2 more. How many pence did he have altogether?”; “A shop had 25 
cartons of milk and sold 14 of them. How many cartons were left?”; “At £8 each, how much 
will 3 T-shirts cost?” Problems about these types of situation demand little conceptual 
analysis; when small numbers are used, pre-school children show high rates of success in 
these problems (for studies showing pre-school children’s success in addition and 
subtraction problems, see Carpenter & Moser, 1982 ; for pre-school children’s success in 
simple multiplication problems, see Becker, 1993; Carpenter, Ansell, Franke, Fennema, & 
Weisbeck, 1993). Thus this sub-test of the WISC is a simple measure of children’s 
knowledge of arithmetic, as indicated in the task’s label. This measure will be used in 
analyses carried out in this study on its own, as an index of the children’s knowledge of 
number facts and computation skill.  
 
The WISC was originally conceived as a measure of two aspects of intelligence, verbal 
(measured by six subtests) and non-verbal (measured by the remaining six subtests). Over 
time, the conception of general intelligence has developed and so did the analyses of the 
different tasks included in the WISC. Recent analyses of the WISC tasks led to the 
identification of three, rather then two, aspects of intelligence: in the new analyses the Verbal 
Comprehension Index is much the same as the original Verbal Scale, but the non-verbal 
tasks are regrouped in two indices, a Perceptual Organisation Index (which contains items 
about spatial reasoning and ordering pictures to form an appropriate time sequence) and a 
Freedom from Distractibility Index (which contains tasks that measure attention and memory; 
the arithmetic subtest also relates to this factor). We ran a factor analysis on the raw scores 
of these tasks and confirmed that these three indices could be identified for the ALSPAC 
sample.   
 
In some of our analyses, we will use an estimate of the children’s full IQ score as a control in 
order to see whether differences in the children’s mathematics reasoning allow us to predict 
their mathematics attainment after controlling for differences in their intelligence. In other 
analyses we separated out and looked at particular sub-test scores in detail. In particular we 
were interested in the WISC Arithmetic task, two spatial sub-tasks from the Perceptual 
Organisation Index, which were the Block Design and the Object Assembly tasks, and two 
tasks from the Freedom from Distractibility Index, the Digit Span task which gave us a 
measure of Working Memory and the Coding task which provided us with a measure of each 
child’s attentional powers. Details of these sub-tests are given in Appendix A. 
 
3.3  The social and affective measures 
 
3.3.1 Socioeconomic status 
 
In the UK, and in many other countries, there are sharp socio-economic differences between 
children. The children in the ALSPAC sample reflect this social diversity well. The ALSPAC 
data set contains three measures that were used in combination to assess the children’s 
SES: the mother’s occupation, the father’s occupation, and the highest level of education 
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attained by the mother. One of the SES categories (army) cannot be placed in the ordinal 
scale formed by other occupations. There are only a few cases in the data set of mothers 
(n=4) and fathers (n=28) whose SES is described by this category: because this is such a 
small number, it was decided to exclude this category from the analyses in order to avoid 
noise in the data. The three measures are highly correlated with each other and so we 
integrated them into a single factor through a principal components analysis. In most 
analyses this combined index will be used to measure the children’s socio-economic 
background. 
 
3.3.2 Streaming 
 
Teachers of the children participating in the ASLPAC study were asked whether the school 
used streaming by ability level for mathematics teaching. Their responses will be treated in 
two ways in the analyses of effects of streaming. First, a variable will be created to test 
whether streaming per se affects children’s outcomes. Second, the mathematics 
achievement of children in each ability group (top, middle, and bottom) will be compared with 
that of children in schools that do not stream children by ability levels for mathematics 
instruction. 
 
3.3.3 Ethnic group 
 
Information about the children’s ethnic group is included in the ASLPAC data set. The groups 
represented in the data file were classified as White, Black Caribbean, Black African, Other 
Black, Indian, Pakistani, Bangladeshi, Chinese and Other. Of these groups, two (Black 
African and Pakistani) had numbers smaller than 5, and so these were excluded from our 
analyses. When there was a loss of participants due to missing values, groups that 
numbered less than 5 were systematically excluded for the specific analysis. 
 
The sample of children with scores in mathematics reasoning and results in KS mathematics 
is mostly (98%) white. Thus the possibilities for investigating effects of ethnicity on 
mathematics achievement are limited but the data will be analysed as far as possible. 
 
3.3.4 Self-confidence in maths 
 
The children were given a measure of how much they liked maths in Year 3 and a measure 
of self-perception as learners of maths in Year 4. These two measures were highly correlated 
(r=.83) even though they were given to the children in different school years. They can be 
treated as a measure of a single concept, children’s self-confidence in maths. We integrated 
the information from these two measures into a single factor, through a principal components 
analysis. This factor will be used in different statistical analysis.  
 
3.3.5  Others’ perception of the child’s ability and further influences on self-
confidence in maths 
 
The teachers’ perception of the children was assessed in Year 3 with questions that do not 
refer specifically to the children’s mathematical ability but to their general ability and 
knowledge. We analysed the relation between teachers’ perceptions and their pupils’ reading 
and mathematical competence in order to test whether this factor, as measured in the 
ALSPAC data, might be relevant to the children’s self-confidence in maths.  
 
Boaler (1997) observed that students are well aware of which stream they themselves and 
their peers are placed in for mathematics. Although there is no measure of how peers 
perceive the children’s mathematics ability, when we analyse the effects of streaming on the 
children’s self-confidence in maths we should remain aware that this effect might be 
mediated by peers’ perception of the children. 
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3.4  The sequence of psychological and educational tests in the ALSPAC 
data 
 
In order to make the relative timing of the different measures clear, we end this section with 
the time-line in Figure 3.   
 
Figure 3 - Timeline for ALSPAC cognitive and affective measures 
 

  
     
Notice that the WISC III test, the first Mathematical Reasoning task and the questionnaire 
given to the teachers were all administered in roughly the same time period and over a year 
after the KS 1 assessments. This made it possible for us to measure how well these centrally 
important variables predicted the KS2 and the KS3 mathematics assessments over time. The 
intervals between the time when the children took the Year 4 Mathematical Reasoning task 
and when the KS2 and 3 assessments were administered were respectively 2 years 4m and 
5 years 4m. The interval between the administration of the Year 6 mathematical reasoning 
task and of the KS3 assessments was 3years 5m. These are long intervals and any variable 
that predicts children’s achievement over such periods can be counted as powerful and 
important. 
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4. Results 
 
We have divided our analyses of the ALSPAC data into two main sections. One deals with 
the relation between the children’s performance in the cognitive tasks and the national Key 
Stage assessments of Mathematics and, to a certain extent, of Science and English as well, 
which we take as a good measure of children’s achievement in these subjects. The other 
section presents our analyses of the impact of social and affective factors on children’s 
mathematical achievement, again as measured by the level of their success in the national 
Key Stage assessments. 
 
Our aim in both sections will be to give a clear and simple summary of a large number of 
analyses, some of which are quite complex. With each set of results we shall say what the 
analyses were and what variables were involved and we shall present the essential and 
important results. However, the reader, who would like to know more about the details of the 
methods and of the full results of our analyses, should also look at Appendices A-D. 
 
In our analyses we took seriously the proposition, mentioned in the introduction, that 
individual differences in children’s mathematical learning could provide us with the 
information that we need about the bases for success in mathematics. With hardly an 
exception our aim in each analysis was to find which variables account for children’s 
mathematics achievement. Each analysis, therefore, had an outcome measure, and this was 
usually children’s results in the national assessments at KS2 and 3 Maths. Each analysis 
also included predictor variables, our aim being to find how well different variables and 
different combinations of variables predict success in these Key Stage assessments.  
 
We used mainly three kinds of statistical analysis to look at these predictive relationships. 
One was the fixed-order multiple regression. The aim of this kind of regression is to see how 
strongly a set of predictor variables is related to a particular outcome measure. The analysis 
provides a standardised co-efficient, called β, for the relationship between each predictor 
variable and the outcome measure, when the influence of all the other variables has been 
taken into account. The higher the β coefficient, the stronger is the relationship between the 
predictor variable and the outcome measure. These regressions also tell you how much of 
the variance in the outcome measure is explained by a particular predictor variable after the 
effect of all other predictor variables previously entered into the equation has been 
controlled. The additional variance that each predictor accounts for when it is entered into the 
equation is the R2 change figure for that variable. Thus, regressions tell us whether there is a 
specific connection between a measure used as a predictor and the children’s mathematics 
achievement, after taking into account what both the predictor and mathematics achievement 
have in common with other predictor variables in the analysis. 
 
The second kind of analysis that we use throughout this report was Structural Equation 
Models (SEMs). A SEM tells you about the strength of the pathways connecting a set of 
variables to an outcome measure. These pathways can be direct: for example you can look 
at the direct path between socio-economic status (SES) and Key Stage Maths performance. 
They can also be indirect: an example would be a pathway that starts with a path between 
SES and mathematical reasoning, and then continues on from mathematical reasoning to the 
outcome measure of mathematical achievement. If this indirect pathway turns out to be 
stronger than the direct path from SES to mathematical achievement, you will have 
established that socio-economic status influences mathematical achievement through the 
effects that it has on children’s mathematical reasoning. SEMs usually also involve ‘latent 
variables’ which are factors formed from two or more directly measured variables. So, one 
can form a latent variable of mathematical reasoning on the basis of different reasoning 
scores (additive reasoning, multiplicative reasoning etc.). Similarly, one can form a measure 
of children’s self-confidence by considering their answers about how much they like maths 
and also how good they think they are in the subject. 
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In reporting our results of these two types of analyses, we shall present β figures in the main 
text and also figures for the percentage of variance in the outcome measures that is 
explained by some of the predictor variables. The detailed tables for each of these multiple 
regressions can all be found in Appendix B. We shall present the figures for some SEMs in 
the main part of the report. 
 
The third kind of analysis that we used in this report was multilevel analysis. Multilevel 
models are necessary, for example, when the same variable might affect mathematics 
achievement at the individual level and at the school level. SES is a most common example 
of this sort of influence: the social composition of the school (i.e. the mean SES of students 
in a school) may affect their achievement above and beyond their individual SES. In these 
analyses, we first assessed how much of the variation between individuals could be 
accounted for by variation between schools. When the proportion of variation accounted for 
by between-school differences turns out to be important, it is then necessary to analyse how 
the school composition affects children’s achievement. Variation among schools can be of 
two types. First, it is possible that, in schools with a higher mean SES composition, students 
from all SES levels perform better than their counterparts in schools with a lower mean SES. 
Second, it is possible that the benefits of attending a school with a higher SES composition 
vary between children depending on their own individual SES. We analysed both possibilities 
using hierarchical linear (multilevel) models. 
 
4.1 Cognitive factors 
 
4.1.1 The effects of cognitive measures on mathematics achievement 
 
The main cognitive measures were the three Mathematical Reasoning tasks, and the various 
sub-tests of the WISC intelligence test that we listed in the previous section. The main 
question that we asked was how well each of these variables predicted children’s 
mathematical achievement after we had taken into account certain essential controls.  
 
(a)  Mathematical Reasoning in Year 4 and WISC Arithmetic 
 
Our first question was about the relative importance of children’s numerical and computation 
skills, on the one hand, and their understanding of quantities and mathematical relations, on 
the other. Both kinds of ability have been suggested as the basis for children’s mathematics 
achievement, but we knew of no decisive comparison of these suggestions. 
 
To answer this question we compared the predictive power of the Mathematical Reasoning 
tasks given in Year 4 and of the WISC Arithmetic sub-test which was administered at much 
the same time (see timeline in Figure 3) and which we took to be a measure of the children’s 
computation ability. We wanted to find out how well these two variables predicted the 
children’s performance in the Key Stage assessments of mathematics and which predicted 
these assessments better. Table 1 gives the correlations between these measures of 
mathematical ability and the children’s achievement in KS 1, 2 and 3.  
 
Table 1 - Correlations between the children’s Mathematical Reasoning in Year 4, their 
WISC Arithmetic scores and the mathematics achievement at KS2 and 3 
 
 WISC Arithmetic KS2 mathematics KS3 mathematics 
Maths Reasoning 
Year 4 

.49 .66 .68 

WISC  
Arithmetic 

 .57 .58 

KS2 mathematics   .88 
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All the correlations were highly significant statistically. The lowest correlation was between 
mathematical reasoning and calculation, which suggests that there was some independence 
between these two cognitive measures. The highest (.88) was between the two Key Stage 
mathematics assessments, and it establishes that the relative level of the children’s 
mathematical achievement during this period was remarkably stable (for a detailed analysis 
of progression and stability of Key Stage attainments, see Duckworth, 2007). 
 
Both cognitive measures correlated well with the two Key Stage assessments, but the 
correlations were noticeably higher for the Mathematical Reasoning tasks than for the WISC 
Arithmetic task. Thus, these correlations provided us with initial evidence for a strong link 
between both abilities (reasoning and calculation) and the children’s success in mathematics 
over a five year period, but they also showed that this link was probably stronger in the case 
of children’s mathematical reasoning than in the case of their ability to calculate. 
 
There is a danger with any simple correlation that it might be the result not of a direct link 
between the two variables concerned but of a common relationship that both of them have 
with some other, third variable. For example, children’s mathematical reasoning might 
correlate with their success in mathematics at school, not because one of the influence of 
mathematical reasoning on mathematical learning but because both variables are 
determined by differences in the children’s IQ. One way to make sure that this is not the case 
is to enter the suspect third variable into a regression equation, as we explained at the 
beginning of the Results section. 
  
In the multiple regressions that we are about to describe we routinely controlled for the 
influence of differences in the children’s ages, their IQ and their working memory, when we 
looked at the effects of mathematical reasoning and of children’s calculation abilities on 
children’s KS Mathematics achievement. We also took into account the effects of each of the 
two principal predictors in these analyses when we were measuring the contribution of the 
other: thus, we controlled for differences in WISC arithmetic when we measured how much 
of the variance in children’s achievement was explained by mathematical reasoning and we 
controlled for differences in mathematical reasoning when we measured how much variance 
in the children’s achievement was explained by WISC arithmetic. 
 
We carried out these multiple regressions to see how well the children’s WISC Arithmetic 
scores and their Year 4 mathematical reasoning scores predicted the assessment of their 
mathematical achievement later at KS2 and at KS3. The regressions (which are summarised 
in detail in Tables 3 and 4 in Appendix B), showed that both measures predicted the 
children’s performance in both of the KS mathematical assessments very well, and 
independently of each other. Thus, the children’s ability both to calculate and to reason about 
mathematical relations when they were 8-years old played a key role in their mathematical 
achievement over the next five years. 
 
A further point to be made about this impressive result is that the contribution made by the 
children’s ability to reason mathematically was far greater than the contribution made by their 
ability to calculate. The β coefficients were consistently higher for Year 4 Mathematical 
Reasoning than for WISC Arithmetic.   The β coefficients for Year 4 Mathematical Reasoning 
stood at .35 with the KS2 and .34 with the KS3 assessments.  For WISC Arithmetic the 
figures were .21 with KS2, and .18 with KS3, as the outcome measures.  
 
Another way of comparing these two predictor variables was to look at the proportion of 
variance in the outcome measure that each predictor accounted for when it was entered as 
the last step in the regression and therefore after the effects of the other four variables in the 
equation had been taken into account.  We found that the WISC Arithmetic task explained 
3.0% and Mathematical Reasoning 7.6% of the variance in the KS2 mathematics 
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assessments when each was entered as the last step in the regression. The equivalent 
figures for the KS3 assessments were 2.3% and 7.5%.  
 
(b)  The sustained effect of mathematical reasoning 
 
The data on mathematical reasoning that we have analysed so far were restricted to the test 
given in Year 4. However, when an ability that has been measured at one particular age 
turns out to be strongly related to children’s achievement at school, one needs to find out 
whether this ability is only important around the age at which the measure was given or 
whether it continues to be important when measured at different ages.  
 
In the ALSPAC project the children were given mathematical reasoning tasks at three times. 
They were given one such task at Year 4, and another mathematical reasoning task (the 
same task) at Years 6 and 8. 
 
In order to find out whether the task given in Year 6 and 8 also predicted KS Maths 
achievement, we ran three new multiple regressions on the relations between Year 6 and 
Year 8 Mathematical Reasoning tasks and the KS2 and 3 assessments (Tables 5, 6 and 7 in 
Appendix B give the details of these regressions). These regressions took the same form as 
the regressions that we have already described in which the Year 4 Mathematical Reasoning 
task was the final step (the regressions reported in Tables 3 and 4). In the three new 
regressions we took into account the effect of differences in the children’s age, their IQ, their 
Working Memory, and their WISC Arithmetic scores, when we measured the effect of 
differences in mathematical reasoning. 
 
The new regressions showed that the predictive power of the Mathematical Reasoning 
scores, already strong in the Year 4 task, was even stronger in Year 6 and stronger still at 
Year 8 Mathematical reasoning tasks. When the KS2 assessment was the outcome 
measure, the β coefficient was .39 for the Year 6 Mathematical Reasoning scores, which of 
course is more than the .35 figure for the Year 4 scores that we have reported already.  With 
the KS3 mathematics achievement as the outcome measure, the β figure for the relationship 
between mathematical reasoning was .40 for the Year 6 scores and .52 for the Year 8 
scores, again much greater than the .35 β figure for the Year 4 scores. Of course, one good 
reason for the progressively stronger relationship over time between the Mathematical 
Reasoning tasks and the Key Stage assessments must have been that the interval in time 
between when the children took these tasks and when they went through the Key Stage 
assessments was shorter for the Mathematical Reasoning tasks given later than for the Year 
4 Mathematical Reasoning task. 
 
(c) Specific and general predictions made by the mathematical reasoning tasks 
 
We have established a strong relation between children’s ability to reason mathematically 
and their achievement in mathematics, but it is possible that their performance in the 
mathematical reasoning tasks may predict their attainment in other subjects as well. The 
question is an interesting and important one, because the answer to it will tell us more about 
the reason why these tasks predict mathematics so strongly. This may be because the 
relations that children have to reason about in these tasks are mathematical ones, in which 
case it would be unlikely that the tasks would predict the children’s achievement in, for 
example, English, a subject that does not involve mathematical reasoning. However, children 
certainly have to reason in English and, if mathematical reasoning tasks predict mathematics 
achievement well because they measure reasoning in general, these tasks should also 
predict children’s achievement in English. 
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We decided, therefore, to look at the relations between mathematical reasoning and the Key 
Stage assessments in English, and also in Science. We chose Science as well because it 
seemed to us to lie somewhere between mathematics and English in terms of its use of 
mathematics. Science, as it is taught at school, does involve mathematical relations. Children 
have to reason about proportions and fractions in physics and chemistry; both proportions 
and fractions involve reasoning about multiplicative relations (see, for example, Vergnaud, 
1983). Therefore, if the reason for the predictive power of the mathematical reasoning tasks 
is that they specifically deal with mathematical relations, we would expect these tasks to 
predict attainment in Mathematics and Science a great deal better than in English.  
 
The ALSPAC data set includes records of Key Stage assessments in Science and in English 
as well as in Mathematics. We were able, therefore, to run identical multiple regressions to 
the five-step regressions that we have already reported on mathematics achievement, except 
that in these new regressions the outcome measures were the children’s scores in the KS2 
and 3 assessments of Science and of English. These analyses are summarised in detail in 
Table 8 in Appendix B. They produced two main results.  
 
The first was that the children’s ability to reason mathematically was more strongly related to 
their achievement in mathematics than in the other two subjects. The second was that the 
mathematical reasoning scores predicted the children’s achievement in Science better than 
in English. The β coefficient for the relationship between the Year 4 Mathematical Reasoning 
task and the KS2 Mathematics achievement was .35; in the case of the Science it was .19; 
and in the case of English it was .13.  The equivalent β figures for the Year 6 Mathematical 
Reasoning task predictions of the KS2 assessments were .39 for Mathematics, .28 for 
Science and .17 for English. The discrepancy in the power of the mathematical reasoning 
tasks to predict Science and English was even more striking with the Year 8 task than with 
the other two tasks. The β coefficient for the relationship between the Year 8 Mathematical 
Reasoning task and KS3 assessments was .52 with Mathematics, .40 with Science and .22 
with English. 
 
Thus, there was a modest but consistent relationship between the mathematical reasoning 
tasks and the KS English assessments, even when the effects of differences in IQ and 
working memory had been controlled. This suggests that, to a small degree, the 
mathematical reasoning tasks were acting as a measure of children’s reasoning in general. 
However, Table 8 in Appendix B shows that the mathematical reasoning tasks never 
accounted for more than 3.1% of the variance in the English assessments. This should serve 
as a reminder that this general function of the mathematical reasoning measures is a highly 
limited one. 
 
The much stronger relationship between mathematical reasoning and the Science 
assessments is important and it entails a serious educational implication, which is that 
teachers of science should pay attention to children’s awareness and understanding of the 
mathematical relationships that are involved in scientific learning. 
 
Finally, the fact that the mathematical reasoning tasks consistently predicted children’s 
mathematical achievement much better than in the other two subjects confirms the power 
and importance of mathematical reasoning in learning mathematics.  
 
Key findings on mathematical reasoning 
 
• Children’s ability to reason about mathematical relations was easily the most powerful 

predictor of children’s mathematical achievement, out of all the relevant cognitive 
measures in the ALSPAC data bank. It strongly predicted their mathematics 
achievement in KS2 and 3 assessments even after controls for differences in age, IQ 
and associated skills. 
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• The contribution of calculation skills to mathematics achievement was independent of 

mathematical reasoning but modest. 
 
• Mathematical reasoning scores were strongly related to the KS mathematics 

assessments, less strongly but quite well related to the science assessments, and 
only weakly related to the English assessments. The relation between mathematical 
reasoning and the science assessments was stronger with the KS3 than with the KS2 
assessments. 

 
4.1.2 General cognitive measures 
 
(a) Spatial abilities 
 
The WISC intelligence test includes two well-established standardised spatial tasks, Block 
Design and Object Assembly, which are described in Appendix A. Here we will simply note 
that in the Block Design test children are asked to construct a series of abstract geometric 
patterns; in the Object assembly test they are given a series of jigsaw type tasks in which 
they have to construct some familiar figures (e.g. a face). Both tasks require the child to 
rotate and manipulate shapes and to imagine the results of these manipulations and 
rotations. Thus, we were able to consider whether the children’s performance in two purely 
spatial tasks predicts their mathematical achievement at school.  
 
We carried out four multiple regressions.  In two of these the outcome measure was the KS2 
Mathematics achievement and in the other two the KS3 Mathematics achievement. Block 
Design was entered as the last step in two of the multiple regressions and Object Assembly 
in the other two. In all four multiple regressions the first four steps were the children’s ages, 
their IQ, their working memory and their mathematical reasoning. 
 
The two analyses in which Block Design was the last step (Tables 9 and 10, Appendix B) 
suggested that children’s spatial abilities, as measured by Block Design, have a small but 
consistent effect on their mathematical achievement. Performance in the Block Design task 
accounted for 1.2% (β= .12) of the variance in children’s mathematical achievement at KS2 
and 2.3 % (β= .18) at KS3 after controls for the other four variables. Thus, the amount of 
variance in the mathematics assessments accounted for by the Block Design scores was 
almost twice as strong five years after, as it was two years after this task was administered.  
The fact that this link between spatial intelligence and mathematics apparently increased in 
strength over time is intriguing and needs further investigation. The increase suggests that 
the demands on children’s spatial abilities made in mathematics classes, particularly in 
classes on geometry, increase between Years 6 and 8 at school.   
 
We ran two further multiple regressions (Table 11 and 12, Appendix B) to analyse the links 
between the Object Assembly scores and children’s success in mathematics. These took the 
same form and contained the same controls as the regressions in which we looked at the 
contribution of Block Design. The analyses revealed a significant connection between the 
Object Assembly scores and both Key Stage assessments, but the contribution of this spatial 
task were very modest indeed. The task accounted for only 0.3% of the variance in the KS2 
and for only 0.2% in the KS3 mathematics assessments. This result confirms the connection 
between children’s spatial ability and their mathematics achievement but it also shows that 
the strength of the connection varies a great deal with the kind of spatial task employed. 
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We can only speculate why Block Design turned out to be a much better predictor than 
Object Assembly. The reason may lie in the nature of the two tasks. The Object Assembly 
task is a jigsaw task in which the children have to put together a set of irregular but familiar 
shapes.  In the Block Design task they have to manipulate and rotate regular geometric 
shapes (plain squares and squares divided diagonally into two equilateral triangles) in order 
to copy complex symmetrical geometrical figures. The requirements of learning geometry 
may account for much of the connection between children’s spatial skills and their 
mathematical achievement. The fact that a task that involves geometric shapes and standard 
geometric transformations like rotation and symmetry predicts mathematical achievement 
relatively well fits this idea. 
 
(b)  A model of the joint effects of children’s mathematical reasoning and spatial 
abilities  
 
We have established, mainly with the use of multiple regressions, three consistent facts 
about children’s mathematical achievement at school. First, mathematical reasoning is a very 
powerful predictor, over several years, of this achievement. Second, children’s ability to do 
sums, as measured by WISC Arithmetic, is also a strong predictor, though not as strong as 
mathematical reasoning. Third, children’s spatial abilities also predict mathematical 
achievement, but to a much smaller extent than the other two measures. The multiple 
regressions show that each of these three variables predicted achievement after the effects 
of the other two had been controlled. This suggests that each variable - mathematical 
reasoning, WISC arithmetic and spatial ability - makes an independent contribution to 
children’s mathematical learning. We used a structural equation model, summarised in 
Figures 4 and 5, to test this conclusion. 
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Figure 4 - Structural equation model of the relationships between Arithmetic, Maths 
Reasoning: Year 4, Spatial Skills, and KS2: Mathematics achievement (N=2488) 
 

   
In this model we assigned separate scores to the three kinds of item (additive reasoning 
about quantities, additive reasoning about relations and multiplicative reasoning) in the Year 
4 Mathematical Reasoning task and formed a latent variable based on these three scores. 
The arrows connecting each group of items to the latent variable mathematical reasoning 
show that, in Year 4, reasoning about additive relations and about multiplicative relations had 
a stronger connection with the overall mathematical reasoning measure than additive 
reasoning about quantities.  
 
We also formed another latent variable for spatial ability based on the scores in the Block 
Design and the Object Assembly tasks. These two latent variables were treated as predictors 
in the model and so was the manifest variable, Arithmetic, which was entirely based on the 
WISC Arithmetic subtest. 
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Figure 5 - Structural equation model of the relationships between Arithmetic, Maths 
Reasoning: Year 4, Spatial Skills and KS3: Mathematics achievement (N=1630) 
 

 
 
The numbers by each of the straight arrows from these three predictors to the outcome 
measure, KS2 (Figure 4) and KS3 (Figure 5) mathematics, represent the β coefficients for 
the predictive strength of these three variables. All three variables made direct and 
independent contributions to the outcome measure, but the influence of mathematical 
reasoning (β=.49) was far greater than that of the other two variables. 
 
Key Findings 
 
• When mathematical reasoning, arithmetic, and spatial skills are considered together in a 

model designed for predicting KS2 and 3 Mathematics achievement, mathematical 
reasoning is found to be the strongest of the three predictors. The addition of spatial 
skills, as a general cognitive skill, does not detract from the importance of the specific 
ability in mathematical reasoning. 

 
• Children’s spatial skills predicted their KS mathematics results, but to a lesser extent. 

Spatial skills were more important for KS3 than KS2 achievement, although the gap in 
time between the assessment of spatial reasoning and KS achievement was greater for 
KS3 than KS2. 
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4.1.3  Memory and attention 
 
Another possible influence on children’s mathematics learning is the degree to which they 
can remember information and can focus their attention in a sustained way in order to learn 
more generally and to solve problems in the mathematics classroom. There are many 
approaches to measuring children’s attention and memory. The Freedom from Distractibility 
Index of the WISC contains three tasks: Arithmetic is part of this index along with Digit Span, 
which assesses memory, and Coding, which assesses attention. The Digit Span task has 
two components. Forward-digit span assesses short-term memory: the child hears a series 
of digits and attempts to repeat them in the same order. Backward-digit span assesses 
working memory: the child hears a series of digits and attempts to repeat them from the last 
heard to the first. Backward-digit span is considered to measure working memory because 
the child has to work on the input - i.e. the series of digits - and reverse its sequence, and at 
the same time recall the input. 
 
In the analyses that we have just described on the effects of the two spatial tasks on 
mathematics learning, we also included the backward-digit span measure of working memory 
as a control; this was the third step in each of the multiple regressions (see Tables 9-12 in 
Appendix B). In these analyses, the IQ estimate excluded the subtest Working Memory. We 
found that Working Memory accounted independently for a small but significant amount of 
variance in KS Maths achievement (about 2% in KS2 and 1% in KS3) and its weight in the 
regression equations (β coefficient) was approximately .1 when the outcome measure was 
the KS2 assessment and .06 when it was the KS3 assessment. Thus, working memory plays 
a role in mathematics achievement that is distinct from general intelligence, even though it 
makes a small contribution.  
 
Another possible influence on children’s mathematical learning is the degree to which they 
can attend in a sustained way to what is going on in the classroom. It is quite hard to 
measure children’s attentional powers, but the WISC battery does contain one task which 
amounts to a plausible attempt to do so. This is the Coding subtest in which children have in 
front of them the digits from 1 to 9; under each digit, is a symbol (e.g. a half circle, a plus 
sign). Below this key there are four rows of digits in random order. The children’s task is to 
draw in the appropriate pattern under each digit. The task is a timed one and the score is the 
number of items filled in correctly in the fixed period. Any child who attends meticulously and 
uninterruptedly to the task at hand should do well in this particular task, and it is hard to see 
any other possible constraint on children’s performance in WISC Coding than failures in 
attention.  
 
Therefore, we carried out two further multiple regressions which took exactly the same form 
as the ones in which we analysed the role of spatial intelligence, except that the last step in 
the analyses was now the WISC Coding scores. Again the outcome measure was the KS2, 
in one analysis, and the KS3 mathematics results in the other analysis. The results for these 
two multiple regressions are presented in Tables 13 and 14 in Appendix B.  
 
The children’s scores in the WISC Coding sub-test did significantly predict the children’s 
mathematical success in the two Key Stage assessments, even after controls for the effects 
of differences in the children’s ages, IQ, working memory and their mathematical reasoning. 
The amount of variance that the Coding scores accounted for in these assessments was 
small in both analyses,1.3% (β coefficient = .12) and 1.4% (β coefficient = .13) respectively, 
but it was consistent and it could be important.  
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There are established ways of improving children’s attentional and working memory 
strategies (e.g. Klingberg, Fernell, Olesen, Johnson, Gustafsson, Dahlström et al. 2005; 
Nunes,  Bell, & Evans, 2008), and the results of these two analyses imply that we now need 
to investigate whether attention and working memory training would also benefit children’s 
mathematical learning. 
 
(a)  A model of the joint effects of children’s mathematical reasoning, memory and 
attention 
 
We have reached much the same position with the measures of memory and attention as 
with the spatial measures. The memory and attention measures made an independent 
contribution to children’s mathematical attainment, but not as strong as mathematical 
reasoning. For this reason we ran a structural equation model that was similar to the one that 
we described in Figures 4 and 5 except that instead of spatial abilities we formed a new 
latent variable, which we called Memory and Attention, based on the memory and attention 
measures. We present this model in Figures 6 and 7. 
 
Figure 6 - Structural equation model of the relationships between Arithmetic, Maths 
Reasoning: Year 4, Attention and Memory Tasks, and Key Stage 2: Mathematics 
achievement (N=2579) 
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The most surprising feature of this model is the predictive strength of the latent variable, 
Attention and Memory, which contrasts with the relatively small predictive contributions of 
Coding and of Digit Span on their own in the multiple regressions just described. The 
success of this latent variable confirms the importance of attention and memory, and adds 
some urgency to our plea for research on the effect of training on mathematical learning. We 
would like to remind readers that, despite the success of the attention and memory variable 
(β=.31 = in the prediction of KS2 results and β=.33 in the prediction of KS3), mathematical 
reasoning predicted KS achievement even better (β=.46 and β=.47, respectively, for KS2 
and 3). 
 
Figure 7 - Structural equation model of the relationships between Arithmetic, Maths 
Reasoning: Year 4, Attention and Memory Tasks, and Key Stage 3: Mathematics 
achievement (N=1680) 
 

 
 
Another finding to be considered is the relatively low value of β for Arithmetic: β=.11 and 
β=.12 for KS2 and 3, respectively). We would like to remind the readers that the subtest 
Arithmetic is actually part of the Freedom from Distractibility Index, together with Attention 
and Memory. This connection between Arithmetic, Attention, and Memory raises the 
possibility that learning arithmetic may be one instance of how attention and memory affect 
mathematics learning: arithmetic facts and calculation rules may be committed to memory 
with a relatively small contribution of other general cognitive factors, which in the WISC are 
verbal comprehension and perceptual integration. For this reason, the importance of 
arithmetic for predicting KS Maths achievement is not affected significantly when spatial skills 
are added to the model but it is affected when attention and memory are added to the model. 
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Key Findings 
 
• Mathematical reasoning makes the most important contribution to the prediction of KS2 

and 3 achievement when its importance is tested together with arithmetic, attention and 
memory. 

 
• Memory and attention made a modest, but independent, contribution to children’s 

mathematical achievement in KS2 and 3. Some children may be at risk for difficulties in 
learning mathematics due to low performance in these cognitive factors. 

 
• The importance of arithmetic as a predictor of KS2 and 3 achievement is reduced by 

adding attention and memory to the same model. This suggests that attention and 
memory play a role in children’s learning of arithmetic facts and calculation. 

 
4.2 Social and emotional factors 
 
4.2.1  The effect of mother’s education and socio-economic status (SES)  
 
The sharp socio-economic differences between children in the UK are known to play a part in 
their educational achievements. The variations among the children in the ALSPAC sample 
reflect the extent of the diversity in socio-economic status that exists in the UK well, but there 
was a loss of participants over time and more participants from higher SES and higher levels 
of mother’s education remained in the sample at later ages. Although there is slightly less 
variability in the sample at later ages, there is considerable variation and the sample can still 
provide a good picture of variation in SES. The sample of children with scores in 
mathematics reasoning and results in KS2 and 3 mathematics is mostly (98%) white. The 
analyses in this section, therefore, exclude children from other ethnic backgrounds to avoid 
noise in the data. Ethnic background is considered later on in a special section. 
 
Mother’s highest educational qualification (which will be referred to as mother’s education for 
greater conciseness) and mother’s and father’s SES are highly correlated. Separate 
analyses were carried out with each of these measures initially in order to seek replication of 
the findings. There were no discrepancies in the results when each of measures was treated 
independently so we report here initially only the analyses with mother’s education. Later on, 
a latent variable, SES background, will be formed using the information from all three 
measures. 
 
The initial analyses are Analyses of Variance (ANOVAs) with mother’s education and gender 
treated as independent variables; this allows for reporting each of these effects and 
interactions between social background and gender. This section focuses on the children’s 
social background and the one that follows on the social composition of the schools. The 
subsequent section focuses on gender and its interaction with social background.2 These 
exploratory analyses were used to develop a more precise hypothesis about the form that 
the relation between social background and mathematics achievement might take. We were 
interested in observing the trends described by the means and the spread of the scores 
within each level of mother’s education. 
 
Figures 8 - 10 present the means for children’s KS1 - 3 Maths achievement, mathematics 
reasoning and general cognitive measures by mother’s education. The results for KS 
attainment are presented in National Curriculum Levels. The figures show that the children’s 
scores in all the measures increase in an almost linear fashion with the mother’s level of 
education. Smaller differences tend to be observed between mothers with CSE and 
                                                 
2 In a set of preliminary analyses we established that there were no age differences between boys and girls nor 
between children from different social backgrounds. Age was therefore not entered in these analyses. 
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Vocational qualifications than between other educational levels. The overall effect of social 
background on all the measures was significant; the effect size was large and consistent 
across all the measures.  
 
Figure 8 - Mothers’ Educational Levels and the children’s attainment scores in the 
KS 1, 2 and 3 mathematical assessments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 - Mothers’ Educational Levels and the children’s scores in the three 
mathematical reasoning tasks 
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Figure 10 - Mothers’ Educational Levels and the children’s scores in the WISC 
Arithmetic and Block Design tasks (N=5564) 
 

 
 
 
Figure 11 shows the distribution of KS1 and 2 Maths attainment for the different levels of 
mother’s education. We selected these two assessments because KS1 is reported in 
National Curriculum levels and KS2 is reported in points attainment so they offer different 
degrees of refinement of the measures. The two graphs demonstrate that social background 
(in these cases, measured by mother’s education) operates by a reduction in the variability of 
scores at the higher levels of mother’s education. Children whose mother’s education is 
classified as vocational or CSE display a greater variation in attainment, with results ranging 
from the lowest to the highest levels. For the sake of brevity, we did not include the graph for 
KS3 results, but the distributions are highly similar in this graph also. 
 
These results are compatible with the idea that children from different social backgrounds 
would in principle show the same amount of variation. However, social background operates 
as an intervention: the higher the parents’ SES and education, the better is the “home 
intervention” that they provide. Effective treatments improve results and reduce variability in 
educational outcomes. Thus, understanding the nature of these natural “home interventions” 
is crucial to promoting equality in education.  
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Figure 11 - Distribution of Key Stage results by different levels of mother’s education 
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SES and mother’s education effects are, to some extent, a black box. It is important in 
educational research to try to look into how these effects are produced in the children’s daily 
lives in and out of school. We carried out two further analyses in order to understand better 
what mediates the effects of the children’s social background on their attainments. Two 
possible explanations could be tested through the analysis of the ALSPAC data: they are that 
(1) “cultural capital” and (2) mathematical reasoning are important mediators of the social 
background effects. 
 
4.2.2  The mediation between social background and mathematics attainment by the 
cultural capital 
 
The ALSPAC data set contains information about what we might call the material aspects of 
the cultural capital that children from more affluent homes have access to: one of the 
questionnaires records whether the child has a computer, a clock, a radio, a television, 
books, comics and games (e.g. Snakes and Ladders) in the bedroom. The questionnaire was 
given to the children when they were about 9 years old. As discussed in the introduction, 
these objects might create the opportunity for parents to carry out activities that impact on 
concepts that will provide a basis for their later mathematics achievement. Therefore, we 
analysed how these measures correlated with each other and with the social background 
measures. By providing clues about the activities in more affluent homes that lead to better 
mathematics results, this information could help us understand what mediates social 
background effects on children’s mathematics learning.  
 
An exploratory analysis through non-parametric correlations showed that there was a 
positive but weak correlation between the social background measures and the child having 
a TV or a computer in the bedroom; these correlations varied between r=.2 and r=.3. There 
was also a weak but positive correlation between the child’s ownership of a TV and a 
computer in the bedroom (r=.27). All other correlations were very low; the items could not be 
added together to provide a single indicator of how the cultural capital was being transmitted 
in the home because they did not form a reliable scale (the Cronbach’s α index of internal 
consistency was .3 and an index of .7 or higher is expected in a reliable scale). There was no 
correlation between the child having games in the room or a computer in the bedroom, on 
the one hand, and the KS1 or 2 Mathematics results and the children’s performance in the 
mathematics reasoning tests, on the other. These material indicators, therefore, did not 
provide information on what mediates the relation between social background and 
mathematics attainment.  
 
4.2.3 The mediation between social background and mathematics attainment by 
mathematics reasoning 
 
So far we have established (1) a strong relationship between children’s mathematics 
reasoning and their achievement in the mathematics assessments at KS2 and 3; (2) a strong 
relationship between measures of the children’s social background and their performance in 
these Key Stage assessments; and (3) a moderate relationship between the same social 
background measures and the children’s success in the mathematical reasoning tasks. It is 
highly likely that these three relationships are connected to each other, and one possible way 
in which they might be linked is through the children’s mathematical reasoning ability playing 
a “mediating” role in the connection between social background and success in the KS 
mathematics assessments. The idea here is that the children’s social background has an 
effect on their ability to reason about mathematical relations, and the extent to which they 
can reason mathematically then determines how well they learn mathematics at school. This 
seemed to us a most plausible hypothesis and we carried out a series of analyses to test it.  
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First we formed one unified measure of the children’s social background. The three social 
background measures, mother’s and father’s SES and mother’s education, are significantly 
correlated. They can be considered as assessing a broader construct, social background, 
which was identified by means of a principal components analysis. A single factor emerged 
from the analysis; the factor loadings were .79 for mothers’ SES, .72 for father’s SES and .82 
for mother’s education.3  
 
We ran a series of structural equation models (SEMs) as a direct test of the hypothesis that 
mathematics reasoning mediates the relation between social background and KS2 and 3 
Mathematics achievement.  An SEM establishes that one variable (B) mediates the effect of 
another variable (A) on the outcome measure (O) when the indirect pathway from A to the O 
via B is as strong as or stronger than the direct pathway from A to O. A strong indirect 
pathway like this actually shows that A influences the outcome through its effect on B. 
 
Figures 12 - 15 all provide good evidence for a strong indirect pathway from Social 
Background to the Key Stage achievement through mathematical reasoning. The path from 
Social Background to the outcome measure in each model (which was either the KS2 or KS3 
mathematics attainment levels) was via mathematical reasoning.4 This means that 
mathematics reasoning mediates a great deal of the effect of social background on children’s 
mathematical achievement at school. In other words one of the main reasons why children’s 
mathematical attainment varies so strongly with the children’s SES is that children’s social 
background has a powerful effect on children’s ability to reason mathematically and their 
mathematical reasoning in turn plays an important role in their mathematical progress at 
school. 
 
In our view these structural equation models suggest that the home interventions may 
operate through some form of teaching of mathematical reasoning in the more affluent 
homes. As a result, children from such home environments develop their mathematics 
reasoning to significantly higher levels than children from less privileged homes, and are at 
an educational advantage when they are taught mathematics in school.  
 
 
 
   

                                                 
3 In some analyses a negative sign will appear because the SES scale in the data set has 1 as the highest value 
and the mother’s education has 1 as the lowest value.  
 
4 Similar results were obtained using the assessments of mathematics reasoning in Year 8 as mediator and KS3 
Maths as outcome. We did not include these figures here for the sake of brevity. 
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Figure 12 - Path analysis showing the coefficients in a model where mathematics 
reasoning measured in Year 4 is treated as a mediator between social background and 
KS2 Maths attainment (N=3183) 
 

 
 
The value next to the arrow connecting Social Background to Key Stage 2 indicates the 
importance of the direct path from Social Background. The value next to the arrow 
connecting Mathematical Reasoning to Key Stage 2 indicates the importance of the indirect 
path. The model shows that the indirect path is considerably stronger than the direct path. 
 
 
 
 
 
 
 
 
 
 
 



  

 43 
 

Figure 13 - Path analysis showing the coefficients in a model where mathematics 
reasoning measured in Year 4 is treated as a mediator between social background and 
KS3 Maths attainment (N=2083) 
 

 
 
The value next to the arrow connecting Social Background to Key Stage 3 indicates the 
importance of the direct path from Social Background. The value next to the arrow 
connecting Mathematical Reasoning to Key Stage 3 indicates the importance of the indirect 
path. The model replicates the finding described in Figure 12: the indirect path is 
considerably stronger than the direct path. 
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Figure 14 - Path analysis showing the coefficients in a model where mathematics 
reasoning measured in Year 6 is treated as a mediator between social background and 
KS2 Maths attainment (N=4953) 
 

 
 
The value next to the arrow connecting Social Background to Key Stage 2 indicates the 
importance of the direct path from Social Background. The value next to the arrow 
connecting Mathematical Reasoning to Key Stage 2 indicates the importance of the indirect 
path. This analysis provides a third replication of the same finding. The measure of 
mathematical reasoning here is the Year 6 Maths Reasoning measure and the outcome KS2 
Maths: the indirect path is clearly stronger than the direct path between SES and KS2 Maths 
achievement.  
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Figure 15 -  Path analysis showing the coefficients in a model where mathematics 
reasoning measured in Year 6 is treated as a mediator between social background and 
KS3 Maths attainment (N=3428) 
 

 
   
Once again, the indirect path between Social Background to Key Stage 3 Maths, through 
Mathematical Reasoning, is stronger (.70) than the direct path (.19). Thus this set of SEMs 
shows that analyses with two different measures of mathematical reasoning (Year 4 and 
Year 6 tasks) and two different outcome measures (KS2 and 3 Maths) converge and 
demonstrate that the indirect path between SES and KS Maths achievement, through 
mathematical reasoning, is stronger than the direct path.  
 
These results are stimulating for educators. They suggest that the negative effects of coming 
from less privileged homes can be offset by an approach to education that offers teaching 
which improves children’s mathematics reasoning. The results converge with evidence from 
a quasi-experimental study (Nunes et al., 2007) in which one cohort of children at risk for 
difficulties in learning mathematics was assigned to a control group and another cohort, 
sampled from the same schools, was assigned to an experimental group. The children in 
both groups were considered at risk for difficulties in learning mathematics because they had 
performed below the 20th percentile in their schools in mathematical reasoning. After the 
intervention, the children who received teaching on mathematics reasoning significantly 
improved their results in KS1 Maths in comparison to the control group. They also showed a 
level of attainment slightly above the average (i.e. the 50th percentile) for British children. 
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4.2.4 The social composition of schools and its effect on mathematics reasoning  
 
Educational researchers are naturally interested in understanding differences between 
schools and attempting to clarify the nature of these differences even when no information 
about the leadership, pedagogy and other school practices is available in a data set. In the 
ALSPAC data set, there is no information about school practices that could have an impact 
on mathematics learning, except for whether the children are in a school that uses streams 
for mathematics teaching or not, and in the former case which stream each child was in.  
 
However, it is still possible to find out whether the demographic composition of the school 
can explain some of the variation observed in the children’s performance. The first step in the 
analysis of school effects is to compare between-school differences with within-school 
differences and estimate the amount of variance between individual children that can be 
accounted for by between-school differences. Between-school differences accounted for 
approximately 10% of the individual differences in mathematics reasoning measured in Year 
4. This is a substantial amount of variance and justifies further investigation regarding the 
nature of this effect. 
 
In the UK, and in many other countries, there are sharp socio-economic differences between 
schools as well as between individual children. Some schools are largely composed of 
children whose parents are well qualified educationally and have relatively high incomes; 
others are not. The schools in the ALSPAC sample reflect this social diversity in schools well.  
The average score for the children’s social background in each school varies a great deal 
between the different schools in the sample, and at the same time most of schools contain 
children from a relatively wide range of socio-economic levels. 
 
The existence of these differences between schools and also between children within 
schools raises an interesting and potentially important question. It is possible that individual 
children’s mathematical understanding might be affected not only by their own socio-
economic levels, but also by the average socio-economic level of the pupils in the school that 
they happen to be in (i.e. the social composition of the school). In the introduction, we 
referred to research that shows that social background affects children’s mathematics 
attainment both at the individual level and through the social composition of schools; we now 
propose to analyse if the same is true of social background influences on mathematical 
reasoning. 
 
We already know that children from higher socio-economic backgrounds tend to reason 
about mathematics more effectively than children from lower socio-economic backgrounds. 
Now, we have to consider the possibility that the socio-economic composition of the schools 
also plays a role. Individual children in schools with pupils from predominantly high social 
backgrounds might do better in mathematical reasoning tasks than children in schools with a 
lower socio-economic composition, and this effect might be independent of the effect on 
individual children of their own social background. In other words, a child from a poor social 
background might be better at reasoning mathematically if he or she attends a school in 
which the average socio-economic level of the pupils is relatively high than one in which it is 
relatively low. 
 
The most efficient way to examine the effect of the differing social composition of schools on 
children’s mathematical learning is multilevel modelling. This type of analysis deals with 
“nested” variables. In the ALSPAC study the children are “nested” in schools: there are 
several schools, but at any particular time each child belonged to one school and not to any 
other school. Multilevel modelling allows investigators to examine whether the nests (in our 
case, the schools) that individual participants happen to be in do have an independent effect 
on these participants’ scores.  
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There are at least two levels of analysis in every multilevel model. Some have two levels, 
others three or four or even more. The multilevel analyses that we shall describe all had two 
levels only. One level was the individual child, and here we examined, or rather re-examined, 
the relation between the individual children’s mathematical performance and their social 
background. The other level was the school (or in other words “the nest”): at this level we 
looked at the overall success of the children in the different schools in relation to the average 
socio-economic level of the pupils in these schools. The number of schools in these analyses 
varied from 27 to 133. The number of the participants in each school ranged from 6 to 168. 
 
We shall describe three multilevel analyses of the connection between socio-economic 
status, both at the level of the individual and at the level of the school, and mathematical 
reasoning. The children’s scores in the Year 4 Mathematics Reasoning task was the 
outcome measure in the first analysis (Table 15, Appendix C): their scores in the Year 6 and 
the Year 8 Mathematics Reasoning tasks were the outcome measures in the second and 
third analyses respectively (Tables 16 and 17, Appendix C). Each analysis measured three 
possible relationships. The first was between the children’s social background at the 
individual level and their ability to reason mathematically, independently of the schools they 
attend. The second was between the socio-economic composition of the schools that the 
children attended at the time and their mathematical reasoning. The third, which we shall 
describe in more detail below, is of an interaction between these two levels. 
 
All three analyses confirmed the relation between socio-economic status and the individual 
children’s mathematical reasoning, and showed that this effect was significant quite 
independently of the schools that the children attended.  
 
The three analyses also showed that the socio-economic composition of the schools 
influenced the children’s performance in the mathematical reasoning tasks. This significant 
effect was quite independent of the relation between the individual children’s social 
background and their scores in the three reasoning tasks. Thus, these analyses established 
that socio-economic factors influence children’s mathematical reasoning at two levels, the 
level of the individual and the level of the school. 
 
The interaction term was not significant in the analyses of the Year 4 and 6 mathematical 
reasoning tasks (Tables 15 and 16, Appendix C), but it was just significant in the analysis of 
the Year 8 mathematical reasoning task (Table 17, Appendix C). This is a modest effect but it 
is worth considering what it means.   
 
A significant interaction indicates that socio-economic differences at one level, the level of 
the school, influence the pattern of socio-economic effects at the other level, the level of the 
individual. Different schools could have different effects on the relation that undoubtedly 
exists between individual children’s socio-economic background and their success in 
mathematical reasoning. In some schools, this relation might be a powerful one, so that the 
children with advantageous backgrounds would do far better in mathematics than children 
from less prosperous families.  In other schools, the differences might be less radical, and 
disadvantaged children would do almost as well as advantaged ones. A significant 
interaction indicates that the socio-economic composition of the school influences how 
powerful the relation between individual children’s social background and their mathematical 
reasoning becomes.  
 
The small, but significant, interaction in the multilevel model of the Year 8 Mathematical 
Reasoning task, therefore, shows that the social composition of the schools in the sample 
influenced the relationship between the individual pupils’ social background and their 
mathematical reasoning scores. We need to know exactly how this relationship varied.  
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Appendix D presents a detailed analysis of this interesting interaction. The analysis showed 
that the relationship between the children’s SES and their mathematical reasoning was quite 
strong in schools whose social composition was low in SES terms or around average, but 
that it was not so strong in schools with a high SES composition. It appears therefore that 
schools with a relatively high SES social composition managed to dampen down the 
otherwise pervasive effects of social background on children’s mathematical reasoning. How 
they manage to do so is an important matter. A note of caution about these results is 
necessary. The number of children from lower SES in schools with a high average SES is 
relatively small and there are no children from higher SES background in the schools in the 
lowest quartile of average SES. It is possible that the attenuation of the connection between 
individual children’s SES and mathematics reasoning in the schools with the highest average 
SES is not due to the schools themselves but to a selection of children from lower SES in the 
admission process. 
 
In summary, social background affects children’s mathematical reasoning at two different 
levels. (1) There is a strong relationship between individual children’s social background and 
the Mathematical Reasoning tasks in Years 4, 6 and 8. The higher the children’s SES, the 
better those children tend to reason mathematically. Multilevel analyses established that this 
effect at the individual level is a significant one, even after controlling for the influence of 
differences between schools that the children attended. (2) There is also a strong 
relationship between the socio-economic composition of the different schools and the 
mathematical reasoning scores of the children in them. Children in schools with a high 
average socio-economic level do better in the mathematical reasoning tasks than children in 
schools with a lower overall socio-economic composition. This effect at the level of schools is 
significant even after the relationship between individual children’s socio-economic 
background and their mathematical reasoning scores is controlled. 
 
By the time children reach Year 8 at school, the effects of their individual social background 
on their mathematical reasoning appear to differ between schools. A moderate, but 
significant, interaction led us to conclude that the usual differences between pupils with high 
and low socio-economic backgrounds in schools do not apply to children in schools in which 
the social composition is generally high (the top quartile), even though they are clearly 
evident in schools with lower social compositions. 
 
Key Findings on the effects of social background 
 
• Individual children whose SES status is high are on the whole better in mathematical 

reasoning than those from lower SES homes, even if they are at the same school. The 
influence of SES at the individual level is similar to an effective educational intervention: it 
raises the average level of performance and reduces the variation between children, and 
consequently the proportion of children who show difficulty in mathematics.  

  
• Children’s SES influences how well they reason mathematically which in turn affects their 

Key Stage mathematics attainment. Mathematical reasoning is a significant mediator of 
the link between SES and achievement. 

 
• SES also operates at the level of the school. Children, who go to schools in which the 

SES composition is high, reason about mathematics more successfully than children at 
schools with a lower SES composition, whatever their own social background. 
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4.2.6 The effect of gender on KS 1 - 3 attainment, mathematics reasoning and 
cognitive skills related to mathematics learning 
 
We found no consistent differences between boys’ and girls’ mathematical achievement as 
measured by the Key Stage results (Table 18 in Appendix C). For the most part, the mean 
for the Key Stage levels in mathematics were identical for the two sexes. Boys did out-
perform girls in KS2 Mathematics when the number of points obtained rather than KS level 
was used as measure of achievement, but the effect size (Cohen’s d) indicated that this 
difference was not important: it was less than 0.2 of a standard deviation. These results are 
entirely consistent with the reviews of gender effects on mathematics achievement reported 
in the introduction (e.g. Tate, 1997). 
 
In contrast, there were definite gender differences in mathematical reasoning (Table 19 in 
Appendix C). In all three tasks there was a significant difference in favour of boys. However, 
the effect sizes (Cohen’s d) indicated consistently that this is not an important difference. In 
the Year 4 Mathematical Reasoning task, the difference was equal to 0.08 standard 
deviations; in the Year 6 task, the difference was equal to 0.23 standard deviations, and in 
the Year 8 task it was equal to 0.17. Thus, although the difference is not due to chance, it is 
certainly not a cause for concern at Year 4. It is puzzling that the difference seems to 
increase over time, even though it remains small. 
 
We also looked at the cognitive skills measured by the WISC which are relevant to 
mathematics attainment. The mean results for these comparisons are presented in Table 20 
in Appendix C. 
 
Boys out-performed girls in Arithmetic, Block Design and Object Assembly, but the difference 
was not significant for Object Assembly. The effect sizes (Cohen’s d) for Arithmetic and 
Block Design were small as they were less than 0.2 of a standard deviation. Girls 
significantly out-performed boys in Coding and Digit Span; the effect size for Digit Span was 
small (0.2 of a standard deviation) and moderate for Coding (0.45 of a standard deviation). 
This latter result does give some cause for concern in view of the finding that the standard 
deviation for boys was also larger than that for girls. This means that more boys than girls 
might be at risk for learning due to attention problems. 
 
In only one of these analyses the interaction between gender and social background was 
significant (father’s SES and gender interacted significantly when the dependent variable 
was Object Assembly). In the context of so many analyses and a non-replication when the 
other measures of social background were used in the analyses, we view this result with 
caution and perhaps a product of chance because so many analyses were carried out. 
 
In conclusion, the analyses of gender effects showed only one important difference, which 
might call for further consideration and perhaps intervention. Boys showed a lower 
performance than girls in attention (Coding Test), which could certainly place some boys at 
risk for learning mathematics. 
 
4.2.7 The effect of ethnicity on KS 1 - 3 attainment, mathematics reasoning and 
cognitive skills related to mathematics learning 
 
The possibility of analysing effects of ethnicity on attainment, mathematics reasoning and 
cognitive skills in the ALSPAC data is very limited due to the small number of participants 
from other ethnic backgrounds than white. The groups represented in the data file which had 
more than 5 participants were classified as White, Black Caribbean, Other Black, Indian, 
Bangladeshi, and Chinese.  
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Before running the analyses to assess effects of ethnicity, we identified in the sample all the 
schools that had at least one participant from an ethnic minority group; only these schools 
were included in the analyses. This allowed us to control for school differences and still retain 
a large enough number of participants from the majority group in the analyses. Thirty-four 
schools had at least one participant from a minority ethnic background. 
 
Next we ran analyses of co-variance, in which we controlled for mother’s education,5 and 
investigated the means and standard error for each of the ethnic groups in KS Maths 
attainment, mathematics reasoning and the subtests in the WISC which relate to 
mathematics attainment. These analyses indicated a significant effect of ethnicity at the .05 
level on the children’s performance in the mathematical reasoning task given in Year 4 and 
the measure of Spatial Skills (which included Block Design and Object Assembly), in the 
WISC.  
 
In order to understand the nature of this effect better, we separated out the results for boys 
and girls and in both cases the difference remained significant for boys but not for girls. 
Some power is lost when the analysis is split by gender, because the number of participants 
decreases, but the number of participants in the analyses remained high enough for 
meaningful effects to be identified.  
 
These analyses identified two significant ethnic differences among boys but none for girls as 
a function of ethnicity. The results for boys are presented in Table 2. The group of white boys 
was the comparison group in the analyses because it has the largest number of participants 
and thus allows for the identification of significant differences where they exist. Boys from the 
Black Caribbean and the Black Other groups had significantly lower scores than the boys in 
the White comparison group in the Year 4 Mathematical Reasoning task.  
 
The significance of this difference in mathematics reasoning measured in Year 4 is that this 
measure was a strong predictor of KS2 and 3 Mathematics and that this analysis controls for 
mother’s education. It is quite possible that the effects would be stronger for this group 
without such controls, as the children might be exposed to two risk factors at the same time. 
The educational implication of this finding is that schools should be particularly aware of the 
importance of promoting mathematical reasoning among these two groups of black children 
early on in their educational lives. 
 
 

                                                 
5 Mother’s education rather than the factor scores for social background was used as the covariate in these 
analyses because of loss of data when the factor scores were used as the covariate. Note the remark by 
Lockheed et al. (1985), referred to in the introduction, about the need to control for SES in the analysis of effects 
of ethnicity on mathematics achievement. 
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Table 2 - Adjusted means (controlling for mother’s education), number of participants, 
and standard error of the means for the different ethnic groups in Mathematics 
Reasoning measured in Year 4 6 
 
Ethnic Group Mathematics Reasoning – Year 4 
Boys only n 

 
Adjusted 
means 

Standard 
error of the 

mean 
 
White 

 
541 

 
11.20 

 
0.13 

Black Caribbean  
16 

 
9.50* 

 
0.74 

Black other  
9 

 
9.17* 

 
0.99 

 
Indian 

 
6 

 
12.17 

 
1.21 

 
Chinese 

 
7 

 
11.28 

 
1.13 

 
* Differences significant at the .05 level. 
 
4.2.8 The effect of streaming on mathematics reasoning and on cognitive skills 
related to mathematics learning 
  
It has already been found in other studies that streaming affects children’s attainment in 
Mathematics (see Slavin, 1990, for a summary of previous research). In our analyses we 
considered two other outcome measures, mathematics reasoning and the subtests of the 
WISC that measure cognitive skills related to mathematics learning, namely Arithmetic, 
Spatial Skills (measured by the sub-tests Block Design and Object Assembly), and Attention 
and Memory (measured by Coding and Digit Span).  
 
Information about whether the school uses ability grouping for mathematics or not is 
available for 11,409 participants in the ALSPAC study; 7% of the teachers answered that the 
schools do not stream for mathematics teaching. In the sub-sample that we analyse here, 
which comprises participants who took the relevant measures, the same percentage of 
answers indicates that the schools do not stream. Thus in this respect the sample analysed 
here reflects the larger ALSPAC sample. Approximately 82% of the children in schools that 
do not stream for maths do not stream for English either and 77% of the children were placed 
in the same ability group for maths and English. This indicates that at least some of the 
schools use within-class ability grouping but we do not know which arrangement each school 
used. In all the analyses carried out here, we consider only the teachers’ answers with 
respect to whether school streams for mathematics teaching and the ability group in which 
the child is placed in mathematics. 
 
Preliminary analyses showed that children’s attainment in KS1 Maths accounted for 47% of 
the variance in children’s assignment to the bottom, middle or top level stream. Gender and 
Social Background did not make a contribution to the assignment to a stream after controlling 
for KS1 Maths results. This is an interesting finding in view of Boaler’s (1997) hypothesis that 
children from lower SES and girls were more likely to be assigned to the lower stream. We 
did not find evidence to support this bias in assignment in the ALSPAC data. Therefore, all 
the analyses reported here control for the children’s KS1 Mathematics attainment but not for 
gender or social background. If an effect of streaming is found, this cannot be attributed to 
the children’s mathematical ability as measured by KS1 attainment. 
                                                 
6 When the number of participants was smaller than 5, the group was excluded from the analysis. 
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We compared children in schools without streaming to children in the different streams (Top, 
Middle, Bottom) in schools in which there was streaming in mathematics. We looked at the 
mathematical reasoning scores of these four groups in the Year 4 and Year 6 Mathematical 
Reasoning tasks. The clear result in both comparisons (see Table 21 in Appendix C) is that 
schools that do not stream the children for mathematics are able to maintain the average 
attainment of the children in Mathematics Reasoning above that obtained by the middle 
group in schools that do stream the children for mathematics teaching. This result is 
important because it cannot be explained by the children’s KS1 attainment as this was used 
as a control in the analyses. Thus, in schools that streamed, the children, both in the bottom 
and in the middle group, seem to be offered fewer opportunities to develop their mathematics 
reasoning than children in schools that do not stream. Children placed in the top group in 
schools that stream performed better in the Mathematics Reasoning Task in Year 4 than 
those in schools that do not stream but this effect was small (Cohen’s d = 0.18 of a standard 
deviation). 
 
The pattern of the four groups’ scores in the WISC cognitive skills that are related to 
mathematics attainment was much the same (see Table 22 in Appendix C). Children in 
schools that do not stream performed significantly better than those in the middle and lower 
group in schools that stream for mathematics teaching, and as well as those in the top group. 
Schools that do not stream are able, therefore, to bring the children to a level of attainment 
above that of the middle group in schools that stream for mathematics attainment. 
  
Thus the pattern of results is slightly different for the skills that are not explicitly taught in 
school, namely spatial skills, attention and memory. The children in schools that do not 
stream perform as well as those in the top group in schools that do stream for mathematics 
teaching, and significantly better than the middle and the lower group. It is likely that, 
although these cognitive skills are not explicit aims of instruction, schools that stream for 
mathematics teaching may make different demands on the children across the streaming 
groups. 
 
In summary, the analyses suggest that the schools that do not stream are able to bring the 
average performance of all children to a level above that of the middle group in schools that 
stream. The only children who seem to benefit from streaming are the children assigned to 
the top level but only in academic skills; this is not observed in the analysis of general 
cognitive skills that support this academic learning. These results are completely in line with 
previous research about mathematics attainment and its relation to streaming (see: Boaler, 
1997; Slavin, 1990). Their implication is that schools that wish to promote further 
mathematics learning among their strongest pupils should seriously consider measures 
alternative to streaming. 
 
Key Finding 
 
• Streaming only improves mathematical achievement of children in the top stream, but this 

effect is small. It actually hinders the progress of children in the middle and bottom 
stream in terms of the development of cognitive abilities that support mathematics 
learning.  
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4.2.10 Self-confidence in learning mathematics 
 
In the introduction we discussed the contribution that large scale longitudinal studies can 
offer to clarify the nature of the connection between self-confidence in maths and 
competence. On the one hand, it is possible that low self-concept as a mathematics learner 
is a result of low achievement. On the other hand, it is just as plausible that the reverse is 
true: low self-confidence results in low achievement. In fact, both hypotheses may be true: 
achievement and self-confidence may reinforce each other over time. Longitudinal studies 
can shed light on which of these alternatives is consistent with children’s development. 
 
We investigated in the analyses regarding children’s self-confidence in maths the factors that 
predict self-confidence and the long-term effects of self-confidence on mathematics 
achievement. 
 
As described in the methods section, self-confidence was treated as a broader concept, 
measured through the children’s liking of maths and their self-perception as learners of 
maths. A single factor, based on a principal components analysis, was used in the regression 
analyses and analyses of variance. 
 
The children’s competence in mathematics was also treated as a latent variable, measured 
through KS1 Maths achievement assessed in Year 2, performance in the WISC Arithmetic 
assessed in Year 3, and the scores in the Year 4 mathematics reasoning. These three 
measures show significant inter-correlations; a principal components analysis shows that 
they form a single factor and can be treated as measuring the same concept, which we will 
call mathematical competence. The factor loadings of these measures were all high: .85, .80, 
and .86, respectively. So they can be seen as assessing the same construct, mathematics 
competence. 
 
Past research has shown that others’ perception of the children’s ability has an impact on 
their self-perception. The ALSPAC data set includes some measures of the teachers’ 
perception of the children, obtained in Year 3, but the questions relate to the children’s 
general ability and knowledge. We analysed whether the teachers’ perception of the 
children’s general ability was related to children’s mathematical competence to test whether 
this factor might be relevant to the children’s self-confidence in maths. Because past 
research (Pretzlik et al., 2003) has shown that teachers’ judgements of children’s general 
ability are more influenced by their verbal than their mathematical ability, we used a broad 
measure of the children’s verbal ability in this analysis too. We obtained an estimate of the 
children’s verbal competence by combining three measures, their achievement in the two 
reading tasks in KS1 and their verbal IQ. The estimate of the children’s mathematical 
competence for the analysis of the teachers’ judgements was based on their KS1 attainment 
and the WISC Arithmetic because the Year 4 Mathematics Reasoning assessment was 
administered after the teachers had answered the questions about the children’s general 
ability. A regression analysis showed that both types of competence, verbal and 
mathematical, contributed to explaining variance in the teachers’ judgements of the children’s 
ability and had similar importance. Figure 16 displays this information graphically. So we 
decided to include the teachers’ judgement obtained in Year 3 as a predictor of the children’s 
self-confidence. 
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Figure 16 - Structural equation model showing the influence of maths and reading/oral 
ability on teachers’ perceptions of children’s general ability (1355) 
 

 
 
There were no direct measures of peer’s perception of the children’s ability but past research 
(Boaler, 1997) shows that children are aware of ability groupings in the classroom. Streaming 
can influence the children’s self-confidence directly and also indirectly, through the 
perception that their peers have of them. Because these two possible impacts of streaming 
cannot be separated in the ALSPAC data, we analyse the effects of streaming in lieu of 
peer’s perception. We first analysed whether the practice of streaming had an influence on 
the children’s self-perception or not; then, in those schools that stream children for 
mathematics teaching, we analysed whether the stream they were assigned to had an 
influence on their self-confidence. 
 
 It has been argued that girls have lower self-confidence in maths even if they have the same 
level of measured competence as boys. It was found in the previous analyses that there 
were no important gender effects in KS1 Maths achievement and mathematics reasoning, 
even though some statistically significant differences were observed. We investigated here 
whether gender explains individual differences in maths self-confidence as well as liking of 
other subjects in school. The children were asked how much they liked different things that 
they did in school in Year 3. A factor analysis showed that three factors described how the 
different subjects were seen by the children. First, children’s liking of Science and Natural 
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History, Geography, and History were highly inter-correlated. Second, their liking of English, 
another language, Arts and Music were highly correlated with each other. Third, children’s 
liking of maths was correlated with their liking of sports. This latter finding did suggest that 
maths and sports might be seen as “boys’ territory”. So we explored whether gender 
explained individual differences in self-confidence in maths and also in how much the 
children liked other subjects. 
 
Finally, past research, reviewed in the introduction, suggests that, although verbal and 
mathematical ability are correlated, people seem to judge themselves in relative terms in 
these two domains (e.g. Marsh, 1986). Those whose verbal ability is higher than their 
mathematical ability think of their mathematical ability as low, even if they do well in 
mathematics assessments. So, we also explored the connection between children’s verbal 
ability and self-confidence in maths. 
 
The preliminary analyses showed that streaming per se did not have an effect on the 
children’s self-confidence: the level of self-confidence expressed by the children in schools 
where they are streamed for maths teaching did not differ on average from that expressed by 
children where they are not. Therefore, in the analyses of effects of streaming, only schools 
that do stream for mathematics teaching were included.7 
 
We investigated whether the five factors listed here (maths competence, verbal ability8, 
teacher’s perception, gender and stream to which child is assigned) contributed to explaining 
individual differences in self-confidence in maths by performing an exploratory stepwise 
regression analysis in order to identify the model that explained the largest amount of 
variance in children’s self-confidence with the smallest number of variables from this set of 
five. This analysis led us to discard the teachers’ perception of the children’s general ability 
from subsequent analyses because it does not explain any variance in the children's self-
confidence in maths independently of the child’s mathematical competence. The other four 
variables explain some variation independently of each other. Figure 17 shows an overview 
of the findings, using a structural equation model. This model takes into account the 
interactions between the four factors as well as the importance of the factors by themselves. 
The amount of variance in the children’s self-confidence that was explained by these four 
factors was modest: a total of 20%.  
 

                                                 
7 The number of participants in the analysis is still large (N=1044) after this exclusion, so the loss of participants is 
not important for the results. 
8  Verbal ability was measured by five sub-tests of the WISC (Information, Similarities, Vocabulary, 
Comprehension and Digit Span), and excluded Arithmetic, which is one of the original subtests in the Verbal 
Ability Scale. 



  

 56 
 

Figure 17 - A structural equation model that shows the relation between the children’s 
self-confidence in maths and the different factors that explain independent variance in 
their self-confidence (N=1022) 
 

 
 
Inspection of the standardised regression coefficients, which are represented by the numbers 
next to the arrows that connect the factors to the measure of children’s self-confidence, 
shows that the most important factor is the children’s competence in mathematics. This has a 
positive value of .60, and indicates a strong effect. So the better children actually are in 
maths, the more confident they are.  
 
The next factor in order of importance was the children’s verbal IQ. It showed a negative but 
modest impact on the children’s self-confidence in maths: the coefficient was -.21. This result 
replicates findings from the literature and suggests that children rate themselves relatively: 
the better they do in verbal tasks, the less confidence they have in their mathematical ability. 
 
Gender also had a significant impact on the children’s self-confidence: girls were less 
confident than boys. Although this impact was small (the coefficient is -.10), it was significant. 
Figure 18 displays the median and the distribution of scores for boys and girls in the 
measures of their self-confidence in maths and their liking of other school subjects. 
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Figure 18 - Children’s self confidence in maths and liking of other subjects 
 

 
 
School subjects that were strongly correlated are considered together in one measure. All 
three measures are displayed on the same scale, where 0 is the median, positive values 
indicate a positive attitude and negative values a negative attitude. The graphs show that 
girls and boys differ on all three measures. Boys show greater self-confidence in maths; girls 
show greater liking of the other school subjects. The difference is particularly large between 
boys and girls in liking English, a second language, arts and music. These analyses were 
followed up with analyses of co-variance, in which we controlled for the children’s ability and 
compared their self-confidence and liking of the school subjects. All analyses showed 
significant differences between boys and girls (at the .001 level). Thus the differences in self-
confidence in maths and liking of the other subjects could not be explained by differences in 
ability, as they persisted in the analyses of covariance. 
 
The Cohen’s d effect sizes indicated that the difference between boys and girls in liking of 
English and the related subjects was quite large: 0.72 standard deviations. The other 
differences were small (0.23 standard deviations for liking of science and related subjects 
and 0.21 for self-confidence in maths). These results suggest that the most important 
differences between boys’ and girls’ attitudes towards school subjects are in the negative 
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attitudes that boys seem to have towards English, foreign languages and arts. The 
differences between girls and boys in the other subjects are small, even though significant 
statistically. None of these differences can be explained by differences in ability. We can only 
speculate that they may reflect cultural stereotypes and family attitudes but we have no 
evidence for this. 
 
Finally, the child’s stream also impacted on the children’s self-confidence: the effect was 
small but significant. It indicated that the children in the lower stream were less confident 
than those in the higher streams. The effect of streaming may operate through peers’ 
perception but streaming may also have a direct influence on the child’s self-confidence. 
Figure 19 shows the self-confidence of children assigned to the top, middle and bottom 
streams as a function of their competence. Inspection of the graphs shows that there were 
children with average levels of ability in all three streams. If we concentrate on those whose 
ability was at the mean, which is zero in this scale, or up to one standard deviation above the 
mean (i.e. between 0 and 1 on the graph), it is quite easy to see that most of the children 
with this level of ability in the bottom stream are below the regression line; in the middle 
stream they are distributed below and above the regression line; and in the top stream there 
are many more above than below the regression line. This indicates a negative effect of 
streaming on children’s self-perception if they are in the bottom stream and a positive effect 
for the children in the top stream. 
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Figure 19 - Graphs showing the relation between the children’s competence and their 
self-confidence in maths for each of the streams in mathematics teaching. 
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It should be remembered that there is a high correlation between the children’s competence 
in mathematics as defined by their KS1 results and their assignment to different streams in 
Year 3. So the differences in self-confidence could stem largely from a direct effect of ability 
on self-confidence. In order to assess whether streaming has an effect beyond ability, we 
created a score for the children’s competence that does not include the KS1 Maths 
achievement, based on the children’s mathematical reasoning assessed in Year 4 and on 
their performance in the WISC Arithmetic sub-test. This factor is highly correlated with KS1 
results but is an independent assessment of the children’s mathematical competence. It was 
important to have an independent assessment because the KS1 Maths results might have 
been used to assign the children to a stream. We then ran an analysis of covariance, in 
which we controlled for the children’s competence as measured by this factor, and compared 
children in different streams. This analysis showed a significant effect of streaming (at the 
.001 level) on the children’s self-confidence in maths. This analysis confirms what is 
suggested by inspection of Figure 19: children in the bottom stream are considerably less 
self-confident than those in the middle and top streams even if they show the same ability on 
the measures used in ASLPAC. 
 
In conclusion, of the five factors that were hypothesised to explain variance in individual 
children’s self-confidence in maths, four had a significant and independent impact. The 
children’s measured competence had the highest impact; this was followed by verbal ability 
and gender, both of which had a negative and similar impact, and finally by streaming. Verbal 
ability had a low negative correlation with self-confidence in maths. Girls displayed lower self-
confidence than boys, even after controlling for their ability. Streaming had a negative impact 
on children who, despite showing an average level of competence, had been assigned to the 
bottom stream for maths. 
 
4.2.11 School effects on the children’s self-confidence 
 
Past research (e.g. Marsh, 1991) indicates that high-ability students in schools where the 
overall ability is high have less positive views of themselves as learners than students of 
comparable levels of ability in schools with a lower average ability. This effect is known as 
the “big-fish-little-pond” effect and has been replicated in the UK by Tymms (2001), who 
found it to be a small effect. We analysed whether this effect could be replicated in the 
analysis of the ALSPAC data. 
 
A preliminary analysis of variance was carried out on the proportion of variance in children’s 
self-confidence that is explained by between-school differences. This showed that only 3% of 
the variation in children’s self-confidence could be attributed to between-school differences, 
which is a small amount.  
 
We followed up this analysis by creating four quartiles of school-level mathematical ability: 
i.e. we estimated the average level of mathematical ability in each school and placed each 
school within a quartile, bottom, middle-low, middle-high, and top. We then carried out an 
analysis of covariance to see whether students with the same level of ability would show 
different levels of self-confidence depending on the average level of mathematical ability in 
their school. In this analysis, we controlled for mathematical ability and tested whether 
children in the different school-quartiles differed significantly from each other. The analysis 
produced a negative result: i.e., we did not find the predicted “big-fish-little-pond” effect. 
There was no sign that children in the schools in the top quartile had lower self-confidence in 
maths than those children in schools in any of the other quartiles, when competence was 
controlled for. 
 
Thus, there are modest school effects on the children’s self-confidence in maths, but we 
have no evidence that these could be attributed to differences between the schools in their 
average level of ability. 



  

 61 
 

 
4.2.12 Self-confidence in maths as a predictor of maths achievement 
 
The aim of the previous analyses was to understand what explains differences between 
children in their self-confidence in maths. The major factor in explaining differences between 
children in self-confidence was their estimated competence.  
 
The analyses carried out in this section seek to understand whether self-confidence in 
maths, in return, also affects children’s achievement. If we find that self-confidence predicts 
the children’s later attainment, providing information that goes above and beyond what we 
know from the children’s competence, we can conclude that self-confidence and competence 
exert mutual influences on each other. Thus improving self-confidence should lead to 
improved attainment for the same level of ability. 
 
In the previous analyses, we established that schools explained a small amount of variance 
in the children’s self-confidence in maths. For this reason, we will use simple regressions in 
order to test whether self-confidence and competence in maths explain independent variance 
in children’s attainment. 
 
The measures used as predictors in the analyses will be: 
 
• the factor created to describe the children’s self-confidence (composed by the degree 

to which the child likes maths, measured in year 3, and self-confidence in maths, 
measured in Year 4); and  

 
• the factor created to describe the children’s competence (composed by their KS1 

Maths achievement, their performance in the WISC Arithmetic sub-test and in the Year 
4 assessment of Mathematical Reasoning).  

 
The outcome measure is attainment in KS2 and KS3 Maths 9.  KS1 Maths cannot be used as 
an outcome because the predictors were measured after the children had already been 
through the KS1 assessments. 
  
We tested whether self-confidence and competence explain independent portions of 
variance in predicting KS2 Maths by using two fixed-order regressions. In the first, we 
entered self-confidence first and then competence; in the second, we reversed the order of 
these predictors. 
 
When self-confidence was entered first in the equation, it explained 13.5% of the differences 
between the children in KS2 Maths attainment; the children’s competence explained a further 
42.5%. When the predictors were entered in the reverse order, the children’s competence 
explained 53% of the differences between the children and their self-confidence explained a 
further 3%. This may seem a small amount of variance but it is independent of the children’s 
competence and statistically significant (at the .001 level).  
 
The coefficients β provide an indication of the relative importance of these two factors, 
competence and confidence, for later achievement. They show that competence is certainly 
the more important of the two: the coefficient for the regression equation for competence was 
.678 and for self-confidence it was .180.  
 

                                                 
9 We carried out the analyses with National Curriculum Levels attained in KS2 and also with the finer measure of 
total marks in maths. The results did not differ so we report here only the analyses using National Curriculum 
Levels. 
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Figure 20 shows these results graphically for KS2 Maths. The figure was obtained through a 
structural equation model using the same measures. The standardised coefficients, 
displayed next to the arrows connecting the predictors to KS2 Mathematics attainment, 
indicate that the children’s competence has the strongest effect of KS2 Maths achievement. 
It should be pointed out that in this model the mutual influences between self-confidence and 
competence are taken into account, whereas this is not the case in a simple regression.  
Thus the coefficients differ in the structural equation model and in the simple regression: the 
importance of maths competence is actually greater (the coefficient goes up to .86) when 
these mutual influences are taken into account. The effect of self-confidence decreases 
correspondingly (it is .03 in this model). Nevertheless, the amount of variance explained in 
KS2 Maths increases to 77% when self-confidence is considered: this contrasts with 62% of 
variance (see Figure 4) explained in the same outcome measure when only cognitive factors 
were used as predictors. 
 
Figure 20 - A structural equation model that shows the relation between the children’s 
attainment in KS2 Maths, their self-confidence and competence in maths (N=1648)  
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Parallel analyses were carried out with KS3 Maths attainment as the outcome measure with 
similar results. When self-confidence was entered first in the analysis, it explained 13% of the 
variance and competence explained a further 42%. When competence was entered first in 
the analysis, it explained 53% of variance and self-confidence a further 2%. This addition 
was significant at the .001 level. It must be noted that KS3 attainment is measured about six 
years after the measure of self-confidence had been given to the children (see the timeline in 
Figure 3). So self-confidence has a long-lasting effect on children’s attainment. An analysis 
of the coefficients β in the regression equations showed, once again, the robustness of this 
finding: the coefficient for competence was .682 and for self-confidence was .146. Due to the 
similarity between the two results for KS2 and KS3, we did not include a figure to show the 
results for KS3 graphically. 
 
We started the analysis of children’s self-confidence with a question about the link between 
achievement and self-confidence in maths. Does achievement lead to greater self-
confidence in children or does self-confidence have an effect on the children’s later 
achievement? 
 
This set of analyses allowed us to find, without a doubt, that the link between self-confidence 
and competence is a two-way street. Children’s self-confidence is influenced by their 
competence but their attainment in KS2 and 3 Maths, although largely determined by their 
competence, is also influenced by their self-confidence. This result is robust, as it was 
replicated across key stages, and also persistent, because the measure of the children’s self-
confidence was obtained about six years before they were given the KS3 Maths 
assessments. The implication is that it is very important to pay attention to the social aspects 
of children’s mathematics learning: not everything can be explained by their cognitive abilities 
and their mathematical competence. 
 
Key Findings 
 
• Children’s self-confidence in mathematics is predicted most strongly by their own 

mathematical competence but also, independently by their gender (girls are less 
confident than boys) and by streaming.  

 
• Children’s attainment in KS2 and 3 mathematics, although largely determined by 

cognitive and social factors, is also influenced by their self-confidence. 
 
• So children’s self-confidence and competence seem to reinforce each other over time. 
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5. Discussion 
 
Our analyses of the ALSPAC data led to a large number of interesting and, in our view, 
important conclusions about the factors that determine how well children learn mathematics 
at school. Our first aim in this brief discussion, therefore, will be to summarise our different 
findings and clarify the relations between them. Our other main aim will be to explore the 
implication of these results for teaching children mathematics and also for future research on 
mathematics education. 
 
5.1 The importance of mathematical reasoning 
 
We start with the question, raised in the opening sections of the introduction, about the role 
of mathematical reasoning. There, we argued that there are good reasons for thinking that it 
is at least as important for children to be able to reason logically and flexibly about quantities 
and relations as to learn how to calculate and to do simple sums. We acknowledged, 
however, the absence of any firm evidence that mathematical reasoning is as important as 
that, and gave this as a reason for analysing the relevant variables in the ALSPAC data 
bank. 
 
We have already explained the unique opportunity that ALSPAC offers to researchers 
interested in studying the bases for children’s development longitudinally. Here, we will only 
add the comment that one of the great advantages of this data bank is that it includes two 
reliable mathematical reasoning tasks, in which all the items test children’s ability to work out 
the relevant quantitative relations and all include only very simple calculations or no 
calculations at all. Thus, we could test the relation between children’s successes and failures 
in these tasks and their progress in learning mathematics at school. 
 
The children’s scores in the mathematical reasoning tasks were consistently and strongly 
related to their achievement in mathematics. Not only were these the best of all the relevant 
predictors in the ALSPAC data bank: the strength of their predictions, also, was remarkably 
constant over time. The children’s scores in the mathematical reasoning task given to them 
when they were 8-years-old accounted for nearly exactly the same amount of variance in the 
mathematics assessments at KS2 two years later and at KS3 five years later (Tables 3 and 4 
in Appendix B) and the β coefficient for these two relations was virtually the same as well 
(.35 and .34 respectively). The scores in the mathematical reasoning task given to the 
children at 11-years actually accounted for more of the variance in the KS3 (3½ years later) 
than in the KS2 (only 6 months later) assessments. 
 
The consistency with which the predictions made by the mathematical reasoning scores 
outstripped those made by any other available set of scores was also impressive, but we 
would like to dwell here on the comparison between the predictive power of mathematical 
reasoning and one other measure, the measure of Arithmetic. Our reason for concentrating 
on this comparison is that the two measures are in genuine competition with each other in 
the classroom as well as in our analyses. Teachers who provide less explicit instruction on 
mathematical relations usually concentrate on teaching how to calculate instead, and when 
teachers do devote more time to fostering mathematical reasoning, they undoubtedly do so 
at the expense of time spent on teaching calculation. Our analyses certainly showed that 
teaching children about calculation is not wasted time, since the ability to calculate proved to 
be a good predictor of mathematical success. However, the far stronger relation between 
mathematical reasoning and mathematical achievement is evidence that there is a genuine 
need for teachers to spend ample time ensuring that their pupils know what quantitative 
relations are and how to reason about them logically and enterprisingly. 
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Mathematical reasoning emerged as an important conduit between children’s social 
backgrounds and their mathematical achievement. Children from prosperous social 
backgrounds did well in the key stage mathematics assessments because they could reason 
well mathematically. Because the mathematical reasoning by children from less prosperous 
backgrounds was less effective, they were less successful in the key stage assessments too.   
 
The pattern of relations between the mathematical reasoning scores and the Mathematics, 
Science and English key stage assessments confirms the central importance of these tasks. 
By showing that the children’s mathematical reasoning scores were more strongly related to 
the children’s key stage assessments in Mathematics than in Science and English, we have 
also established that the mathematical reasoning tasks are valid, as well as reliable, 
instruments for measuring children’s mathematical progress. Our discovery that the 
reasoning tasks predicted Science assessments much better than English assessments also 
seems to us be a result of prime educational importance. Its strong implication is that 
mathematical reasoning plays an important part in learning science; this is most likely to 
result from the ubiquitous need for children to reason about quantitatively scientific concepts 
that involve relations (such as density) and about relations between variables. It follows that 
the teaching of these two subjects should be a great deal more integrated than it is now. 
 
5.2 Other cognitive variables 
 
It has often been suggested that various other cognitive skills, not in themselves obviously 
mathematical, nevertheless play an important part in children’s mathematical development, 
but the evidence for these hypotheses has on the whole been unsatisfactory for the reasons 
that we gave in our introduction. We had the opportunity to investigate some of these 
hypotheses with the help of the ALSPAC data bank.    
 
One quite plausible suggestion is that children’s mathematical progress is affected by how 
skilled they are in processing and thinking about spatial relations. Geometry, which is about 
mathematical representations of space and spatial relations, is an important part of most 
children’s mathematical education, and this at least must make considerable demands on 
children’s spatial knowledge. Since the ALSPAC data included two standardised spatial 
tasks, we were able to examine the contribution of this knowledge to mathematics 
achievement, and we found some evidence for a moderate but consistent connection 
between children’s spatial ability, measured when they were 8-years-old, and their 
mathematical achievements later on. 
 
One interesting point to emerge from these analyses was that one of the spatial tests 
predicted mathematical achievement more strongly and in a more sustained way than the 
other. The children were required to manipulate regular, abstract, geometric shapes in the 
more successful task and irregular shapes, which when combined correctly added up to a 
meaningful figure (a face, a ball), in the less successful task. The implication of this 
difference is that the connection between spatial scores and mathematics may be entirely 
due to the rather specific spatial demands made by school geometry, which concentrates on 
regular shapes rather than objects used in everyday life. This however is a hypothesis - one 
that badly needs testing. The hypothesis is supported by the fact that the successful spatial 
task predicted children’s mathematics achievement at 14-years, five years after the task was 
administered, better than at 11 years, about two and a half years after spatial test. On the 
whole children spend more time on geometry at 14- than at 11-years, and this may be why a 
spatial test given to 8-year olds predicts their mathematics achievement better at 14- than at 
11-years. However, this is only indirect evidence for a link between spatial skills and learning 
geometry: we need a lot more research on this possible connection. 
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The other two cognitive measures, of memory and of attention, are usually treated as 
information processing tasks. It is of course quite possible that children’s ability to deal with 
incoming information does affect how well they learn mathematics, and could account for 
some of the variation in mathematical achievement, and this is an idea that has been 
expressed many times, particularly about working memory. In fact, our multiple regressions 
did produce some evidence of a quite modest connection between working memory and 
mathematics achievement and a slightly stronger connection in the case of Coding, our most 
direct measure of attention. However, when we formed a latent variable, which we called 
Attention and Memory, on the basis of the two memory measures, Forward and Backward 
Digit Span, and the Coding task, we found a fairly strong connection between this new 
variable and children’s mathematical achievement in a Structural Equation Model. The latent 
variable, Mathematical Reasoning, was, as usual, an even better predictor, but nevertheless 
the Attention and Memory variable did make an impressive contribution. This result, 
therefore, supports the idea that children’s ability to process information also affects their 
mathematical progress. It should prompt research on the effect on children’s mathematical 
achievement of improving children’s memory and attention with the help of existing tried and 
tested intervention methods. 
 
We have a final comment to make about the cognitive measures. The clear pattern that has 
emerged is of several quite different cognitive abilities making separate and independent 
contributions to children’s successes and failures in mathematics. There certainly is a 
pecking order in the relative strength of these contributions, with Mathematical Reasoning at 
the top and Attention and Memory near the bottom, but it would be wrong to dismiss any of 
the abilities that we have considered as too negligible to bother with. The pattern of multi-
determination is in itself important, because it does not fit well with hypotheses that the 
serious problems that some children have with mathematics are due to the impairments in 
just one underlying ability, such as working memory or calculation skills. Our analyses 
suggest that there probably is no one golden bullet here: several factors determine children’s 
successes and their failures in mathematics. 
 
5.3 Social factors: social background 
 
The transition from cognitive to social factors in our analyses was nearly seamless because 
we used our main cognitive variable, mathematical reasoning, as a tool to find out how 
children’s social backgrounds affect their mathematical achievement. We had expected a 
relation between children’s background and their mathematical achievement, and we did find 
an almost linear relation between these two variables, but in our view when you find such a 
relation, you must also explain the pathway between them. A person’s social background 
affects many aspects of his or her life, and our question was which of these aspects in turn 
leads to the individual doing well or badly in mathematics. Our attempts to find particular 
items in the ‘cultural capital’ provided by the children’s family environment, which might play 
this intervening role, came to nothing. In contrast, as we have mentioned already in this 
section, when we turned to our cognitive measures we were able to produce a convincing 
model of the relationships between social background, mathematical reasoning and 
mathematical achievement. In this model, mathematical reasoning provides the pathway, 
and is therefore the main reason why social background has such a strong effect on 
children’s mathematical learning. This raises another question. The question is whether 
schools can themselves provide more focused instruction on mathematical reasoning and 
through their own intervention promote greater equality in mathematical attainment across 
SES groups. Hypotheses such as this one should be urgently investigated. 
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We pursued the relationship between children’s social background and their mathematical 
reasoning in our attempts to disentangle the effects of children’s social backgrounds at two 
different levels: at the level of the individual child and at the level of the school the child 
happens to be in. Of these two levels, the level of the school probably needs the most 
explanation. It is in principle possible that the overall SES composition of the different 
schools could affect the pupils’ mathematical progress. Children who attend schools where 
most of the children come from prosperous homes might do better than those in schools 
where the majority of pupils are from less prosperous homes simply because of the different 
environments provided by those different schools. 
 
The multilevel models that we constructed showed quite clearly that there were strong effects 
at both levels on the children’s mathematical reasoning. Their own social status played an 
important part, but so did the social composition of their schools. As far as we know, this is a 
new result and in our view an intriguing one. Since SES differences in the children’s school 
environment, as well as in their home environment, play a role in their mathematical 
reasoning, the question that we asked earlier about SES effects on mathematical reasoning 
becomes a more complicated one. We need to know how the environments provided by 
schools with high and low SES compositions differ, and which differences influence the level 
of children’s mathematical reasoning. We also need to know whether these are genuine 
school effects or whether they may be a result of selection in the recruitment in different 
schools. Once again, intervention studies that aim to promote the development of 
mathematical reasoning would help distinguish between these two possible interpretations of 
the school effects. 
 
5.4 Streaming and self-confidence 
 
One difference between school environments is their policy on streaming. Some schools in 
the ALSPAC sample put children into different streams in their mathematics classes: others 
did not. When we compared children’s mathematical achievements in these different kinds of 
school, we made sure to compare the children in the different streams with the children in the 
non-streamed schools separately. We found, as others found before us, that streaming only 
helps the children placed in the top stream. The rest are mostly hindered by streaming in the 
development of their mathematical reasoning.  
 
We also found that the self confidence of children in the middle and bottom streams was 
lower than that of children of the same ability levels in the top stream. This is important 
because our analyses of the effects of self confidence show a relation between how self 
confident a child is and how well that child does several years later in the key stage 
assessments. 
 
Self-confidence itself was consistently an important factor. We found that children’s previous 
success in the Key Stage 1 mathematical assessments predicted their self confidence very 
well. Undoubtedly their confidence is largely built on past successes or failures in 
mathematics. However, we also showed that the children’s self-confidence made a modest 
contribution to their success in later key stage assessments, even after controls for the 
effects of differences in their level of attainment in the previous key stage assessment. Thus, 
children’s own feelings about how good they are at mathematics play an independent part in 
how well they do in mathematics. The strong general implication of this result is that affective 
factors are important too. The result also implies that teachers should find try to ways of 
boosting children’s beliefs in the quality of their mathematical thinking.    
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5.5 Implications for education and for future research 
 
We will conclude our report by summarising what we see as the best, next steps to take, 
given the results that we have presented. The educational implications of these results are 
clear. We have identified certain abilities that are essential to good progress in mathematical 
learning. The next step should be to find out how well schools already foster and encourage 
these abilities, and to develop ways for schools to do so where research does suggest ways 
forward.  
 
We can take two such abilities, mathematical reasoning and calculation, as an example. It is 
highly likely, and the content of the national primary strategy for teaching numeracy supports 
the conclusion, that schools already do quite enough to teach children about calculation, but 
perhaps not nearly enough to show them how to reason about quantitative relations. If this is 
the case, steps should be taken to devote more teaching time to mathematical reasoning, 
which should not be difficult to do, since successful methods for teaching this form of 
reasoning have already been tested and documented (Nunes et al., 2007).  
 
We advocate that other positive results in our analyses, such as the contributions of spatial 
and other information processing abilities to mathematical achievement, should be 
considered in the same way. Again, if needs be, there are tested and available methods of 
improving some of these underlying abilities through teaching, which could easily be 
considered in the development of personalised instruction for children who might be at risk or 
which could be integrated in the school curricula. 
 
The data on the different effects of different social background might seem to raise a more 
intractable problem, but the relationship between social background and mathematical 
reasoning gives us a clear solution. The main pathway from social background to 
mathematical achievement is through the children’s ability to reason mathematically. So, 
improving children’s reasoning should decrease the effects of differences in social 
backgrounds. To some extent this seems to be happening in some schools already, at any 
rate with older children. The interesting and important interaction, which we described at 
some length in Appendix D, established that the effects of social background at the children’s 
individual level are minimal with 14-year-old children who attend schools in which the 
majority of children come from relatively prosperous backgrounds. It is possible that these 
schools have found ways, which still need to be identified, of promoting mathematical 
reasoning to such an extent that there are no longer differences in the mathematical 
reasoning of children from different social backgrounds at these schools. However, we are 
cautious about this hypothesis because of the limited number of children from the lower SES 
quartile in schools with a high SES social composition. 
 
The results and conclusions of our analyses are, we think, quite comprehensive and 
indisputable, given the size of the sample and the longitudinal nature of the ALSPAC data. 
However, they do raise important questions for further research. We have highlighted these 
already, and will only mention them briefly again here.  
 
We certainly need to know more about the social effects and, in particular, about what 
families and schools can do to have an effect on children’s reasoning. We should like to 
know more about the connection between children’s spatial skills and the spatial demands of 
learning geometry. It would also be valuable to know more about children’s mathematical 
reasoning itself, although the ALSPAC data have already provided a great deal of relevant 
information. There are, however, some important quantitative relations that we were not able 
to include in our original measures of mathematical reasoning, such as the inverse relation 
between addition and subtraction (Bryant, Christie & Rendu, 1999; Nunes, Bryant, Hallett, 
Bell, & Evans, 2009; Stern, 2005) and between multiplication and division, and it would be 
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useful to know whether the reasoning measures, already extremely effective, would become 
even more powerful if these were included as well.  
 
Such research projects are the natural consequence of an enquiry like ours which has 
established beyond doubt the importance of teaching and learning mathematical reasoning, 
and the central part that mathematical reasoning plays in determining the striking differences 
in children’s mathematical achievements at school. Our most important claim is that 
improvements in teaching children about mathematical reasoning will radically reduce the 
extent of these worrying differences. 



  

 70 
 

References 
 
Adams, J. W., & Hitch, G. J. (1997). Working memory and children's mental addition. Journal 
of Experimental Child Psychology, 67, 21-38. 
 
Alexander, K. L., McDill, E. L., Fenessy, J., & D'Amico, R. J. (1979). School SES influences - 
Composition or context? Sociology of Education, 52, 222-237. 
 
Apple, M. W. (1979). Ideology and curriculum. London: Routledge & Kegan Paul. 
 
Baroody, A. J., & Gannon, K. E. (1984). The development of the commutativity principle and 
economical addition strategies. Cognition and Instruction, 1, 321-339. 
 
Becker, J. (1993). Young children's numerical use of number words: counting in many-to-one 
situations. Developmental Psychology, 19, 458-465. 
 
Boaler, J. (1997). Setting, Social Class and Survival of the Quickest. British Educational 
Research Journal, 23(5 ), 575-595. 
 
Brown, M. (1981). Number operations. In K. Hart (Ed.), Children's Understanding of 
Mathematics: 11-16 (pp. 23-47). Windsor, UK: NFER-Nelson. 
 
Bryant, P. E. (1985). The distinction between knowing when to do a sum and knowing how to 
do it. Educational Psychology, 5, 207-215. 
 
Bryant, P., Christie, C., & Rendu, A. (1999). Children's understanding of the relation between 
addition and subtraction: inversion, identity and decomposition. Journal of Experimental Child 
Psychology, 74, 194-212. 
 
Butterworth, B. (2003). Dyscalculia Screener. London: Nelson. 
 
Bynner, J., & Parsons, S. (2000). The impact of poor numeracy on employment and career 
progression. In C. Tikly & A. Wolf (Eds.), The maths we need to know (pp. 26-51). London: 
University of London Institute of Education (The Bedford Way Papers). 
 
Carpenter, T. P., Ansell, E., Franke, M. L., Fennema, E., & Weisbeck, L. (1993). Models of 
Problem Solving: A Study of Kindergarten Children's Problem-Solving Processes. Journal for 
Research in Mathematics Education, 24, 428-441. 
 
Carpenter, T. P., & Moser, J. M. (1982). The Development of Addition and Subtraction 
Problem-Solving Skills. In T. P. Carpenter, J. M. Moser & T. A. Romberg (Eds.), Addition and 
Subtraction (pp. 9-24). New York: Lawrence Erlbaum Associates. 
 
Clements, D. H., Copple, C., & Hyson, M. (2005). Early childhood mathematics: Promoting 
good beginnings. A joint position statement of the National Association for the Education of 
Young Children (NAEYC) and the National Council of Teachers of Mathematics (NCTM). 
Reston, VA: NCTM. 
 
Crocker, T., & Cheeseman, R. (1991). The ability of young children to rank themselves for 
academic ability. In M. Woodhead, P. Light & R. Carr (Eds.), Growing up in a Changing 
Society (pp. 156-162). London: Routledge and The Open University. 
 
Dehaene, S. (1997). The Number Sense. London: Penguin. 
 



  

 71 
 

Department for Children, S. a. F. (2008). Making good progress in Kes Stage 3 Mathematics: 
www.teachernet.gov.uk/publications, DCSF-00189-2008. 
 
Dermitzaki, I., & Efklides, A. (2000). Aspects of Self-Concept and Their Relationship to 
Language Performance and Verbal Reasoning Ability. The American Journal of Psychology, 
113(4 ), 621-637. 
 
Dowker, A. (2005). Individual differences in Arithmetic. Hove: Psychology Press. 
 
Duckworth, K. (2007). What role for the three Rs? Progress and attainment during primary 
school. London: Centre for Research on the Wider Benefits of Learning, Institute of 
Education. 
 
Durand, M., Hulme, C., Larkin, R., & Snowling, M. (2005). The cognitive foundations of 
reading and arithmetic skills in 7- to 10-year-olds. Journal of Experimental Child Psychology, 
91, 113-136. 
 
Fennema, E. (1977). Influences of selected cognitive, affective, and educational variables on 
sex-related differences in mathematics learning and studying. . In J. Shoemaker (Ed.), 
Women and mathematics: Research perspectives for change. N.I.E. Papers in Education 
and Work, No. 8 (pp. 79-135). Washington, DC: Education and Work Group, National 
Institute of Education. 
 
Fennema, E., & Peterson, P. L. (1985). Autonomous learning behavior: A possible 
explanation of gender-related differences in mathematics. In L. C. Wilkinson & C. B. Marrett 
(Eds.), Gender influences in classroom interaction (pp. 17-35). Orlando, FL: Academic Press. 
 
Freeman, N. H., Antonuccia, C., & Lewis, C. (2000). Representation of the cardinality 
principle: early conception of error in a counterfactual test. Cognition, 74, 71-89. 
 
Fuson, K. C. (1988). Children's Counting and Concepts of Number. New York: Springer 
Verlag. 
 
Geary, D. C., & Brown, S. C. (1991). Cognitive addition:  strategy choice and speed of 
processing differences in gifted, normal and mathematically disabled children. 
Developmental Psychology, 27, 398-406. 
 
Gelman, R., & Butterworth, B. (2005). Number and language: how are they related? Trends 
in Cognitive Science, 8, 6-10. 
 
Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, 
Mass: Harvard University Press. 
 
Ginsburg, H. P., Klein, A., & Starkey, P. (1998). The Development of Children's Mathematical 
Thinking: Connecting Research with Practice. In W. Damon, I. E. Siegel & A. A. Renninger 
(Eds.), Handbook of Child Psychology. Child Psychology in Practice (Vol. 4, pp. 401-476). 
New York: John Wiley & Sons. 
 
Ginsburg, H. P., & Russell, R. L. (1981). Social class and racial influences on early 
mathematical thinking. Monographs of the Society for Research in Child Development, 46(6), 
Serial No. 193. 
 
Green, P. J., Dugoni, B. L., Ingels, S. J., & Cambum, E. (1995). A profile of the American 
high school senior in 1992. Washington, DC:: U.S. Department of Education. 

http://www.teachernet.gov.uk/publications�


  

 72 
 

Hitch, G. J., & McAuley, E. (1991). Working memory in children with specific arithmetic 
learning difficulties. British Journal of Psychology, 82, 375-386. 
 
Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. 
(2005). Computerized training of working memory in children with ADHD - A randomized, 
controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 
177-186. 
 
Leder, G. C. (1992). Mathematics and Gender: Changing Perspectives. In D. A. Grouws 
(Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 597-622). New 
York: Macmillan Publishing Company. 
 
Lee, V. E., & Bryk, A. S. (1989). A Multilevel Model of the Social Distribution of High School 
Achievement. Sociology of Education, 62(3), 172-192. 
 
Lockheed, M. E., Thorpe, M., Brooks-Gunn, J., Casserly, P., & McAloon, A. (1985). Sex and 
ethnic differences in middle school mathematics, science and computer science: What do we 
know? Princeton, NJ: Educational Testing Service. 
 
Lubienski, S. T., & Bowen, A. (2000). Who's Counting? A Survey of Mathematics Education 
Research 1982-1998. Journal for Research in Mathematics Education, 31(5), 626-633. 
 
McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific 
arithmetic learning difficulties. Journal of Experimental Child Psychology, 74, 240-260. 
 
Marsh, H. W. (1986). Verbal and math self-concepts: An internal/external frame of reference 
model. American Educational Research Journal, 23, 129-149. 
 
Marsh, H. W. (1991). Failure of High-Ability High Schools to Deliver Academic Benefits 
Commensurate With Their Students' Ability Levels. American Educational Research Journal, 
28(2), 445-480. 
 
Marsh, H. W., & Yeung, A. S. (1997). Coursework Selection: Relations to Academic Self-
Concept and Achievement. American Educational Research Journal, 34, 691-720. 
 
Melhuish, E., Romaniuk, H., Sammons, P., Sylva, K., Siraj-Blatchford, I., & Taggart, B. 
(2006). The Effective Pre-School and Primary Education 3-11 Project (EPPE 3-11):The 
Effectiveness of Primary Schools in England in Key Stage 2 for 2002, 2003 and 2004. 
London: DfES / Institute of Education, University of London. 
 
Mortimore, P., Sammons, P., Stoll, L., Lewis, D., & Ecob, R. (1988). School matters. Wells 
Somerset: Open Books. 
 
Noss, R., & Hoyles, C. (1992). Looking back and looking forward. In C. Hoyles & R. Noss 
(Eds.), Learning mathematics and LOGO (pp. 431-470). Cambridge (MA): The MIT Press. 
 
Noss, R., & Hoyles, C. (1996). Windows on mathematical meaning: Learning cultures and 
computers. Dordrecht, The Netherlands: Kluwer. 
 
Nunes, T., Bell, D., Evans, D. (2008). Improving children’s working memory through guided 
rehearsal. Paper presented at the American Educational Research Association. New York, 
April. 
 
Nunes, T., & Bryant, P. (1996). Children doing mathematics. Oxford: Blackwell. 



  

 73 
 

Nunes, T., Bryant, P., Evans, D., Bell, D., Gardner, S., Gardner, A., & Carraher, J. N. (2007). 
The contribution of logical reasoning to the learning of mathematics in primary school. British 
Journal of Developmental Psychology, 25, 147-166. 
 
Nunes, T., Bryant, P., Hallett, D., Bell, D., & Evans, D. (2009). Teaching Children About the 
Inverse Relation Between Addition and Subtraction. Mathematical Thinking and Learning, 
11(1), 61-78. 
 
Opdenakker, M., & Van Damme, J. (2007). Do school context, student composition and 
school leadership affect school practice and outcomes in secondary education? British 
Educational Research Journal, 33(2), 179-206. 
 
Pajares, F., & Miller, D. M. (1994). The role of self-efficacy and self-concept beliefs in 
mathematical problem-solving: A path analysis. Journal of Educational Psychology, 86, 193-
203. 
 
Piaget, J. (1952). The child's conception of number. London: Routledge and Kegan Paul. 
 
Piaget, J., & Inhelder, B. (1974). The child's construction of quantities. London: Routledge & 
Kegan Paul. 
 
Piaget, J., & Inhelder, B. (1975). The Origin of the Idea of Chance in Children. London: 
Routledge and Kegan Paul. 
 
Pretzlik, U., Olsson, J., Nabuco, M. E., & Cruz, I. (2003). Teachers' implicit views of 
intelligence predict pupils' self-perceptions as learners. Cognitive Development, 18, 579-600. 
 
Reyes, L. H., & Stanic, G. M. A. (1988). Race, Sex, Socioeconomic Status, and 
Mathematics. Journal for Research in Mathematics Education,, 19(1), 26-43. 
 
Sacker, A., Schoon, I., & Bartley. M. (2002). Social inequality in educational achievement 
and psychosocial adjustment throughout childhood. Social Science and Medicine, 55, 863-
880. 
 
Secada, W. G. (1992). Race, ethnicity, social class, language, and achievement in 
mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and 
learning (pp. 623-660). New York: Macmillan. 
 
Siegel, L. S., & Linder, B. A. (1984). Short term memory processes in children with reading 
and arithmetic learning disabilities. Developmental Psychology, 20, 200-207. 
 
Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally 
achieving and subtypes of learning disabled children. Child Development, 60, 973-980. 
 
Siegler, R., & Crowley, K. (1991). The Microgenetic Method. A Direct Means for Studying 
Cognitive Development. American Psychologist, 46, 606-620. 
 
Siegler, R. S., & Ramani, G. B. (2009). Playing Linear Number Board Games - But Not 
Circular Ones - Improves Low-Income Preschoolers’ Numerical Understanding. Journal of 
Educational Psychology, in press. 
 
Skaalvik, E. M., & Rankin, R. J. (1995). A Test of the Internal/External Frame of Reference 
Model at Different Levels of Math and Verbal Self-Perception. American Educational 
Research Journal, 32(1), 161-184. 



  

 74 
 

Slavin, R. E. (1990). Achievement effects of ability grouping in secondary schools: a best 
evidence synthesis. Review of Educational Research, 60, 471-499. 
 
Stern, E. (2005). Transitions in mathematics: From intuitive quantification to symbol-based 
reasoning. Paper presented at the International Society for the Study of Behavioral 
Development (ISSBD), Melbourne, Australia. 
 
Stevenson, H. W., Stigler, J. W., Lee, S.-Y., Kitamura, S., & Hsu, C.-C. (1985). Cognitive 
performance and academic achievement of Japanese, Chinese and American children. Child 
Development, 56, 718-734. 
 
Stevenson, H. W., Stigler, J. W., Lucker, G. W., Lee, S.-Y., Hsu, C. C., & Kitamura, S. 
(1986). Mathematics achievement of Chinese, Japanese and American children. Science, 
231, 693-699. 
 
Stigler, J. W., Lee, S.-Y., & Stevenson, H. W. (1987). Mathematics classrooms in Japan, 
Taiwan and the United States. Child Development, 58, 1272-1285. 
 
Tate, W. F. (1997). Race-Ethnicity, SES, Gender, and Language Proficiency Trends in 
Mathematics Achievement: An Update. Journal for Research in Mathematics Education, 
28(6), 652-679. 
 
Thompson, P. (1994). The Development of the Concept of Speed and Its Relationship to 
Concepts of Rate. In G. Harel & J. Confrey (Eds.), The Development of Multiplicative 
Reasoning in the Learning of Mathematics (pp. 181-236). Albany, New York: State University 
of New York Press. 
 
Thompson, P. W. (1993). Quantitative Reasoning, Complexity, and Additive Structures. 
Educational Studies in Mathematics, 25, 165-208. 
 
Towse, J. N., & Hitch, G. (1995). Is there a relationship between task demand and storage 
space in tests of working memory capacity? Quarterly Journal of Experimental Psychology, 
48A, 108–124. 
 
Tymms, P. (2001). A Test of the Big Fish in a Little Pond Hypothesis: An Investigation Into 
the Feelings of Seven-Year-Old Pupils in School. School Effectiveness and School 
Improvement. An International Journal of Research, Policy and Practice, 12(2), 161-181. 
 
Vergnaud, G. (1979). The Acquisition of Arithmetical Concepts. Educational Studies in 
Mathematics, 10, 263-274. 
 
Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of 
mathematics concepts and processes (pp. 128-175). London: Academic Press. 
 
Wechsler, D. (1992). WISC-III UK  Manual. Sidcup, Kent: The Psychological Corporation, 
Harcourt Brace Jovanovich. 
 
Zimmermann, W. & Cunningham, S (1991). Visualization in teaching and learning 
mathematics. Washington (DC):  Mathematical Association of America  
 



  

 75 
 

Appendix A - Details of the ALSPAC tasks analysed in this report 
 
A.  Cognitive tasks 
 
The Mathematical Reasoning Tasks were presented orally, with the support of pictures. The 
instructions are written here for the readers’ information. Figure 21 presents some examples 
of items in the Year 4 Mathematical Reasoning Tasks. The items on top are examples of 
additive reasoning problems and those in the bottom illustrate multiplicative reasoning. 
 
Figure 21 - Examples of Items in Y4 Mathematic reasoning tests 
         
           
       

  
       
 
 
 
 
 
  
 

The roll on top has 8 sweets. How many 
sweets do you think there are in the big roll 
below? Write you answer in the empty box. 

3 rabbits live in each house. How many 
rabbits live altogether in the 4 houses?  
Write your answer in the box. 

The frog costs 11p. Tick the coins you 
need to give the exact money. 

(Make sure there are no rulers on the 
table before this question is asked) 
Here is a picture of a ribbon and a ruler. 
How long is the ribbon? Use the ruler in 
the picture to help you find out. Write 
your answer in the empty box. 
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Figure 22 presents some examples of items in the Year 6/8 Mathematical Reasoning Tasks. 
The items on top are examples of additive reasoning problems and those in the bottom 
illustrate multiplicative reasoning. 
 
Figure 22 - Examples of items in Y6/8 Mathematical Reasoning Tasks

In the pinball game, you 
win one point for each 
pinball that falls into the 
top area, where there is a 
treasure. Look at game 1. 
There are 4 pinballs in the 
treasure area. This 
means: won 4.

 You loose one point for each pinball that 
falls into the bottom area, where there is a 
skull. Look at game 1. There is one pinball in 
the skull area. This means lost 1. 
 If your pinballs fall into the tube, you do not 
score. Look at game 1. There are 2 pinballs 
in the tube. No points there. 
 What was the score for this game? 

Ali played 2 games. When he played Game 
1, he lost 3 points. Draw in the 7 pinballs to 
make him end with a loosing score of 3 
points. When he played Game 2 he won 4 
points. Draw in the 7 pinballs to make him 
end with a winning score of 4.  

There is a medicine that is very bitter and the 
chemist mixes it with syrup for the children to 
make it taste better.  
Yesterday she mixed 1 spoon of medicine 
with 4 spoons of syrup.  
Today she had to make more mixture and 
she will have to use 2 spoons of medicine.  
How many spoons of syrup will she need for 
the mixture to taste the same as yesterday?  
Draw the spoons or write the number under 
the syrup bottle. 

M o n d a y

Y e s      N o

T u e s d a y

o f  t h e  
m i x t u r e
i s  b l u e

o f  t h e  m i x t u r e
i s  b l u e

Imagine you are mixing paint. On Monday you 
mix 3 bottles of white and 3 of blue paint. The 
blue paint appears grey in the picture.  On 
Tuesday you mix 2 bottles of white and 2 of 
blue. Will the colour of the mixed paint look the 
same on Monday and Tuesday? Circle ‘yes’ or 
‘no’ in the box at the bottom of the page. 
What fraction of the paint is blue on Monday? 
Write your answer in the box. 
 What fraction of the paint is blue on Tuesday? 
Write your answer in the box. 
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The WISC III subtests treated as separate measures in the analyses 
 
Arithmetic 
 
WISC Arithmetic contains a series of sums and arithmetical problems, in each of which it is 
quite clear what calculation the child has to do. Thus the sub-test is a pure measure of the 
ability to calculate, and it involves no mathematical reasoning because there is no need in 
any of the items in WISC arithmetic to work out what calculation is needed. That is explicit 
from the start. 
 
Block Design 
 
The children are shown a card that depicts a pattern in two colours (Figure 23 displays an 
example of a possible item; for copyright reasons, it is not possible to include an actual item). 
The child is offered a number of square blocks which have faces that are painted in a single 
colour or in two colours with a division along the diagonal. The child is asked to reproduce 
the figure on the card using the blocks. The task is timed: there is a time limit for each shape. 
 
Figure 23 - An item that illustrates the Block Design task 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Object Assembly 
 
The child is given a collection of cut-out shapes, which, if put together correctly, will 
represent something familiar to the child (e.g. a ball, a hand). The child is not told what the 
resulting figure will be. The task is timed: there is a time limit for each object. 
 
Digit Span - forward and backward 
 
Forward-digit span assesses short-term memory: the child hears a series of digits and 
attempts to repeat them in the same order. Backward-digit span assesses working memory: 
the child hears a series of digits and attempts to repeat them from the last heard to the first. 
Backward-digit span is considered to be a measure of working memory because the child 
has to work on the input - i.e. the series of digits - and at the same time recall the input. 
 
Coding 
 
Children have in front of them, as a key, the digits from one to nine; under each digit, there is 
a symbol (e.g. a half circle, a plus sign). Below this key there are several rows of digits in 
random order. The children’s task is to draw in the appropriate pattern under each digit. The 
task is a timed one and the score is the number of items filled in correctly in the fixed period, 
with penalties for mistakes. Any child who attends meticulously and uninterruptedly to the 
task at hand should do well in this particular task, and it is hard to see any other possible 
constraint on children’s performance in WISC Coding than failures in attention. 
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Appendix B - Regression analyses used to test whether different 
cognitive measures made independent contributions to the 
predictions of Key Stage Maths attainment 
 
Table 3 
Prediction of Key Stage 2 mathematics assessments by WISC Arithmetic & 
Mathematical Reasoning in Year 4 
 
Two multiple regressions in which the outcome measure was the mathematics assessments 
at Key Stage 2. The first three predictor variables entered were: (1) Age at key stage 
assessment. (2) IQ, (3) Working memory. WISC arithmetic was the 4th and Maths reasoning 
the final step in one regressions and vice versa in the other regression (N=2413) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard 
error of B 

 
1st step  
Age at outcome 

.028 .12 .023 .003 

 
2nd step  
WISC IQ Full scale minus 
Arithmetic & Working 
Memory 

.369 .32 .015 .001 

 
3rd step  
WISC Working Memory 

.030 .09 .076 .013 

 
4th  step in 1st regression 
WISC Arithmetic 

.073 .21 .046 .004 

 
5th step in 1st  regression  
Year 4 Maths Reasoning 
Task 

.076 .35 .087 .004 

 
4th step in 2nd regression  
Year 4 Maths Reasoning 
Task 

.119 .35 .087 .004 

 
5th step in 2nd regression  
WISC Arithmetic 

.030 .21 .046 .004 
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Table 4 
Prediction of Key Stage 3 mathematics assessments by WISC Arithmetic & 
Mathematical Reasoning in Year 4 
 
Two multiple regressions in which the outcome measure was the mathematics assessments 
at Key Stage 3. The first three predictor variables entered were: (1) Age at key stage 
assessment. (2) IQ, (3) Working memory. WISC arithmetic was the 4th and Year 4 Maths 
Reasoning the final step in one regression and vice versa in the other regression (N= 1595) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard 
error of B 

 
1st step  
Age at outcome 

.011 .09 .028 .005 

 
2nd step  
WISC IQ Full scale minus 
Arithmetic & Working 
Memory 

.463 .40 .030 .001 

 
3rd step  
WISC Working Memory 

.019 .06 .092 .024 

 
4th  step in 1st regression 
WISC Arithmetic 

.059 .18 .065 .007 

 
5th step in 1st regression  
Year 4 Maths Reasoning 
Task 

.075 .34 .138 .008 

 
4th step in 2nd regression  
Year 4 Maths Reasoning 
Task 

.111 .34 .138 .008 

 
5th step in 2nd regression 
WISC Arithmetic 

.023 .18 .065 .007 
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Table 5 
Prediction of Key Stage 2 mathematics assessments by Mathematical Reasoning in 
Year 6 
 
 
Multiple regression in which the outcome measure was the mathematics assessments at Key 
Stage 2. The first four predictor variables entered were: (1) Age at key stage assessment. (2) 
IQ, (3) Working memory. (4)  WISC Arithmetic. The final variable was Year 6 Mathematical 
Reasoning (N= 3752) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard error 
of B 

 
1st step  
Age at outcome 

.017 .13 .027 .002 

 
2nd step  
WISC IQ Full scale minus 
Arithmetic & Working 
Memory 

.393 .28 .014 .001 

 
3rd step  
WISC Working Memory 

.033 .11 .100 .010 

 
4th  step in 1st  regression  
WISC Arithmetic 

.068 .21 .047 .003 

 
5th step in 1st regression  
Year 6 Maths Reasoning 
Task 

.099 .39 .044 .001 

 
4th step in 2nd regression  
Year 6 Maths Reasoning 
Task 

.137 .39 .044 .001 

 
5th step in 2nd regression  
WISC Arithmetic 

.031 .21 .047 .003 
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Table 6 
Prediction of Key Stage 3 mathematics assessments by Mathematical Reasoning in 
Year 6  
 
Multiple regression in which the outcome measure was the mathematics assessments at Key 
Stage 3. The first four predictor variables entered were: (1) Age at key stage assessment. (2) 
IQ, (3) Working memory. (4)  WISC Arithmetic. The final variable was Year 6 Mathematical 
Reasoning (N= 2590) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard error 
of B 

 
1st step  
Age at outcome 

.007 .06 .020 .004 

2nd step  
WISC IQ Full scale minus 
Arithmetic & Working 
Memory 

.469 .35 .026 .001 

 
3rd step  
WISC Working Memory 

.026 .09 .135 .018 

 
4th  step in 1st  regression  
WISC Arithmetic 

.061 .19 .068 .005 

 
5th step in 1st regression  
Year 6 Maths Reasoning 
Task 

.098 .40 .070 .003 

 
4th step in 2nd regression  
Year 6 Maths Reasoning 
Task 

.135 .40 .070 .003 

 
5th step in 2nd regression  
WISC Arithmetic 

.025 .19 .068 .005 

 



  

 82 
 

 
Table 7 
Prediction of Key Stage 3 mathematics assessments by Mathematical Reasoning in 
Year 8 
 
 
Multiple regression in which the outcome measure was the mathematics assessments at Key 
Stage 3. The first four predictor variables entered were: (1) Age at key stage assessment. (2) 
IQ, (3) Working memory. (4)  WISC Arithmetic. The final variable was Year 8 Mathematical 
Reasoning (N= 1169) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard error 
of B 

 
1st step  
Age at outcome 

.005 .06 .020 .005 

 
2nd step  
WISC IQ Full scale minus 
Arithmetic & Working 
Memory 

.436 .29 .021 .001 

 
3rd step  
WISC Working Memory 

.019 .06 .087 .024 

 
4th  step in 1st regression 
WISC Arithmetic 

.054 .17 .057 .006 

 
5th step in 1st regression  
Year 8 Maths Reasoning 
Task 

.178 .52 .085 .003 

 
4th step in 2nd regression  
Year 8 Maths Reasoning 
Task 

.211 .52 .085 .003 

 
5th step in 2nd regression  
WISC Arithmetic 

.020 .17 .057 .006 
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Table 8 
Prediction of Key Stage Mathematics, English and Science by Mathematical 
Reasoning tasks 
  
The R2 change and β figures for the relation between the Mathematics Reasoning Task 
scores and the children’s achievement in Mathematics, English and Science.  
 
                                     Outcome Measure 

   
Mathematics 

 
English 

 
Science 

Year in which 
Mathematics 
Reasoning Task 
was given 

 
Key 

Stage 

 
R2 

change 

 
Β 

 
R2 

change 

 
β 

 
R2 

change 

 
Β 

4 2 .076 .35 .011 .130 .022 .19 
 

6 2 .099 .39 .019 .172 .050 .28 
 

4 3 .075 .34 .014 .144 .028 .21 
 

6 3 .098 .40 .016 .158 .067 .33 
 

8 3 .178 .52 .031 .218 .108 .40 
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Table 9 
Prediction of Key Stage 2 mathematics assessments WISC Block Design 
 
 
Multiple regression in which the outcome measure was the mathematics assessments at Key 
Stage 2. The first four predictor variables entered were: (1) Age at key stage assessment. (2) 
IQ, (3) Working memory. (4)  Year 4 Mathematical Reasoning. The final variable was WISC 
Block Design (N= 2232) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard 
error of B 

 
1st step  
Age at outcome 

.035 .12 .024 .003 

 
2nd step  
WISC IQ Full scale minus Block 
Design and Working Memory 

.369 .36 .020 .001 

 
3rd step  
WISC Working Memory 

.024 .10 .095 .014 

 
4th  step in 1st regression  
Year 4 Maths Reasoning Task 

.105 .36 .092 .004 

 
5th step in 1st regression  
WISC Block Design 

.012 .12 .007 .001 

 
4th step in 2nd regression  
WISC Block Design 

.025 .12 .007 .001 

 
5th step in 2nd regression  
Year 4 Maths Reasoning Task 

.091 .36 .092 .004 
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Table 10  
Prediction of Key Stage 3 mathematics assessments by WISC Block Design 
 
Multiple regression in which the outcome measure was the mathematics assessments at 
Key Stage 3. The first four predictor variables entered were: (1) Age at key stage 
assessment. (2) IQ, (3) Working memory. (4)  Year 4 Mathematical Reasoning. The final 
variable was WISC Block Design (N= 1485) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard 
error of B 

 
1st step  
Age at outcome 

.013 .08 .027 .005 

 
2nd step  
WISC IQ Full scale minus Block 
design & Working Memory 

.440 .39 .034 .002 

 
3rd step  
WISC Working Memory 

.015 .08 .108 .025 

 
4th  step 
in 1st regression  
Year 4 Maths Reasoning Task 

.104 .35 .141 .008 

 
5th step in 1st regression  
WISC Block Design 

.023 .18 .017 .002 

 
4th step in 2nd regression  
WISC Block Design 

.044 .18 .017 .002 

 
5th step in 2nd regression  
Year 4 Maths Reasoning Task 

.084 .35 .141 .008 
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Table 11  
Prediction of Key Stage 2 mathematics assessments by WISC Object Assembly 
 
Multiple regression in which the outcome measure was the mathematics assessments 
at Key Stage 2. The first four predictor variables entered were: (1) Age at key stage 
assessment. (2) IQ, (3) Working memory. (4)  Year 4 Mathematical Reasoning. The 
final variable was WISC Object assembly (N= 2221) 
 
Step in regression 

 
R2 change 

β 
coefficient 

 
B 

Standard 
error of B 

 
1st step  
Age at outcome 

.038 .12 .023 .003 

 
2nd step  
WISC IQ Full scale minus Object 
assembly & Working Memory 

.380 .40 .022 .001 

 
3rd step  
WISC Working Memory 

.020 .10 .093 .014 

 
4th  step in 1st regression  
Year 4 Maths Reasoning Task 

.096 .36 .092 .004 

 
5th step in 1st regression  
WISC Object assembly 

.003 .06 .005 .001 

 
4th step in 2nd regression  
WISC Object assembly 

.006 .06 .005 .001 

 
5th step in 2nd regression  
Year 4 Maths Reasoning Task 

.093 .36 .092 .004 
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Table 12  
Prediction of Key Stage 3 mathematics assessments by WISC Object Assembly 
 
Multiple regression in which the outcome measure was the mathematics assessments 
at Key Stage 3. The first four predictor variables entered were: (1) Age at key stage 
assessment. (2) IQ, (3) Working memory. (4)  Year 4 Mathematical Reasoning. The 
final variable was WISC Object assembly (N= 1487) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard 
error of B 

 
1st step  
Age at outcome 

.016 .09 .028 .006 

 
2nd step  
WISC IQ Full scale minus Object 
Assembly and Working Memory 

.463 .46 .039 .002 

 
3rd step  
WISC Working Memory 

.013 .08 .118 .025 

 
4th  step in 1st regression  
Year 4 Maths Reasoning Task 

.093 .36 .145 .008 

 
5th step in 1st regression  
WISC Object assembly 

.002 .05 .006 .002 

 
4th step in 2nd regression  
WISC Object Assembly 

.005 .05 .006 .002 

 
5th step in 2nd regression  
Year 4 Maths Reasoning Task 

.090 .36 .145 .008 
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Table 13  
Prediction of Key Stage 2 mathematics assessments by WISC Coding subtest  

 
Multiple regression in which the outcome measure was the mathematics assessments at 
Key Stage 2. The first four predictor variables entered were: (1) Age at key stage 
assessment. (2) IQ, (3) Working memory. (4)  Year 4 Mathematical Reasoning. The final 
variable was WISC Coding (N= 2225) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard 
error of B 

 
1st step  
Age at outcome 

.037 .13 .024 .003 

 
2nd step  
WISC IQ Full scale minus 
Coding and Working Memory 

.359 .37 .020 .001 

 
3rd step  
WISC Working Memory 

.024 .10 .090 .014 

 
4th  step in 1st regression  
Year 4 Maths Reasoning Task 

.107 .36 .092 .004 

 
5th step in 1st regression  
WISC Coding 

.013 .12 .013 .002 

 
4th step in 2nd regression  
WISC Coding 

.027 .12 .013 .002 

  
5th step in 2nd regression  
Year 4 Maths Reasoning Task 

.092 .36 .092 .004 
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Table 14 
Prediction of Key Stage 3 mathematics assessments by WISC Coding subtest  
 
Multiple regression in which the outcome measure was the mathematics assessments at 
Key Stage 3. The first four predictor variables entered were: (1) Age at key stage 
assessment. (2) IQ, (3) Working memory. (4)  Year 4 Mathematical Reasoning. The final 
variable was WISC Coding (N= 1482) 
 
Step in regression 

 
R2 change 

Β 
coefficient 

 
B 

Standard 
error of B 

 
1st step  
Age at outcome 

.014 .09 .030 .006 

 
2nd step  
WISC IQ Full scale minus 
Coding and Working Memory 

.443 .43 .036 .002 

 
3rd step  
WISC Working Memory 

.016 .08 .112 .025 

 
4th  step in 1st regression  
Year 4 Maths Reasoning Task 

.100 .35 .143 .008 

 
5th step in 1st regression  
WISC Coding 

.014 .13 .021 .003 

 
4th step in 2nd regression  
WISC Coding 

.026 .13 .021 .003 

 
5th step in 2nd regression  
Year 4 Maths Reasoning Task 

.088 .35 .143 .008 
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Appendix C - Different types of analysis investigating the effects of 
social factors on Key Stage Mathematics attainment and on 
children’s self confidence in maths 
 

 
Table 15 
Multilevel analysis of the effects of socio-economic status on the Year 4 
Mathematical Reasoning scores at two levels: the level of individual child and the 
level of the school * 
  

Estimate 
 
t 

 
Significance 

 
Intercept 

 
10.87 

  

 
Effect of SES at the individual level 

 
-0.73 

 
-9.78 

 
<.001 

 
Effect of SES at the school level 

 
-0.70 

 
-4.03 

 
<.001 

 
Interaction between the two levels 

 
0.16 

 
1.30 

 
.192 

 
Residual 

 
7.66 

  

 
* Number of children: 2213 
* Number of schools:  86 
* Mean no. of children analysed in each school: 25.73 (range 6-65) 
 

 
* Number of children: 3440 
* Number of schools:  133 
* Mean no. of children analysed in each school: 25.87 (range 7-132) 

 
Table 16 
Multilevel analysis of the effects of socio-economic status on the Year 6 
Mathematical Reasoning scores at two levels: the level of individual child and the 
level of the school * 
  

Estimate 
 
t 

 
Significance 

 
Intercept 

 
19.82 

  

 
Effect of SES at the individual level 

 
-1.70 

 
-9.78 

 
<.001 

 
Effect of SES at the school level 

 
-1.88 

 
-4.03 

 
<.001 

 
Interaction between the two levels 

 
0.08 

 
1.30 

 
.760 

 
Residual 

 
39.42 
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* Number of children: 1894 
* Number of schools:  27 
* Mean no. of children analysed in each school: 70.15 (range 15-168) 
 
 
Table 18 
Mean, Standard Deviation, Number of Participants for each Key Stage Mathematical 
Results by Gender 
 
 
Gender KS1 

 
Standard 

Deviation and n 
KS2 

 

 
 

Standard 
Deviation and n 

 
 

KS3 
 

 
 

Standard 
Deviation and n 

                 
Male 
 3.38 1.36 

n=3775 

 
4.15 

 
0.72 

n= 4022 
 

6.44 1.33 
n=2810 

         
Female 
 3.44 1.27 

n=3583 

 
4.14 

 
0.72 

n=3944 
 

6.44 1.22 
n=2674 

 

 
Table 17 
Multilevel analysis of the effects of socio-economic status on the Year 8 
Mathematical Reasoning scores at two levels: the level of individual child and the 
level of the school * 
  

Estimate 
 
t 

 
Significance 

 
Intercept 

 
23.77 

  

 
Effect of SES at the individual 
level 

 
-1.93 

 
-9.78 

 
<.001 

 
Effect of SES at the school level 

 
-2.11 

 
-4.03 

 
<.001 

 
Interaction between the two 
levels 

 
-0.66 

 
1.30 

 
.042 

 
Residual 

 
41.31 
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Table 19 
Mean, Standard Deviation, Number of Participants for each Mathematical Reasoning 
Test by Gender 
 
Gender 

Year 4 
Maths 

Reasoning 
Max: 17 

Standard 
Deviation 

and n 

Year 6 
Maths 

Reasoning
Max: 35 

 
Standard 
Deviation 

and 

Year 8 
Maths 

Reasoning 
Max: 35 

 
Standard 
Deviation 

and n 
                   
Male 11.12 

 
3.07 

N=1761 
20.86 

 
6.96 

N=2659 
24.54 

 
6.90 

N=1026 
         
Female 
 10.88 

 
3.00 

N=1768 
 

19.26 

 
6.69 

N=2631 
 

23.39 

 
6.86 

N=887 
 

 

 
 

                                                 
10 Scaled scores are adjusted for age differences. Their expected mean is 10 and Standard Deviation is 3. The N 
is approximately the same across tests because these are subtests of a measured administered on a single 
occasion. 

 
Table 20 
Mean Scaled Score10 and Number of Participants for Mathematically Relevant 
Cognitive Skills Measured in the WISC by Gender 
 
Gender 

 
Arithmetic 

 

 
Block 

Design 
Object 

Assembly 

 
Coding 

 
Digit Span 

 
N 

          
Male 10.85 

 
10.98 10.30 9.94 10.14 

 
2774 

 
              
Female 
 

 
10.49 

 

 
10.49 

 

 
9.91 

 

 
11.29 

 
10.74 

 
2795 
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Table 21 
Means (controlling for KS1 results) in the Year 4 Mathematics Reasoning Test, 
standard error of the mean, and number of participants by group defined for streaming

 
Mathematics Reasoning 

Year 4 
Mathematics Reasoning 

Year 6 
Streaming Group 
 

Mean 
(n) Standard Error 

Mean 
(n) Standard Error 

 
School does not 
stream 

 
10.80 

(n=205) 
.16 

 
19.77 

(n=403) 

 
.27 

 
Top group 

 
11.36 

(n=995) 
.08 

 
20.76 

(n=2353) 

 
.12 

 
Middle group 

 
10.32 

(n=1065) 
.07 

 
17.96 

(n=1892) 

 
.12 

 
Lower group 

 
9.22 
(584) 

.12 
 

15.98 
(n=1106) 

 
.19 

 
Table 22 
Means (controlling for KS 1 results) in the WISC cognitive skills measured in Year 4, 
standard error of the mean, and number of participants by group defined for streaming 
in Year 3 

 
Arithmetic 

 
Spatial Skills 

 
Attention and Memory 

 

Streaming Group 
Mean 

(n) 
Standard 

Error 
Mean 

(n) 
Standard 

Error 
Mean 

(n) 
Standard 

Error 
 
School does not 
stream 

 
10.72 

(n=189) 

 
.25 

 
21.86 

(n=177) 

 
.43 

 
21.49 

(n=180) 

 
.31 

 
Top group 

 
11.52* 

(n=1180) 

 
.12 

 
21.66 

(n=1118) 

 
.20 

 
22.13 

(n=1161) 

 
.14 

 
Middle group 

 
10.06* 

(n=1099) 

 
.10 

 
20.37* 

(n=1020) 

 
.18 

 
20.51* 

(n=1063) 

 
.13 

 
Lower group 

 
8.91* 

(n=519) 

 
.18 

 
18.68* 

(n=481) 

 
.31 

 
18.56* 

(n=502) 

 
.22 
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Appendix D - The cross-level interaction in the multilevel model of 
the Year 8 Mathematical Reasoning task 
  
We had already measured each school’s social composition by calculating its mean score on 
the Social Background Factor.  Now, we divided the schools into four groups in terms of their 
social composition. We called the four social composition school groups Top, Medium High, 
Medium Low and Bottom. 
 
Then we looked at the relationship between the individual children’s social background and 
their mathematical reasoning in the Year 8 Mathematical Reasoning task separately within 
each of the school groups. The significant interaction suggested that this relationship should 
be different in the high and low social composition schools. So, forming these groups allowed 
us to look at such differences. 
 
To simplify an already quite complicated manoeuvre, we also divided the total sample of 
children in this analysis into four social background quartile groups and then we calculated 
the mean mathematical reasoning score for each of the quartiles in each school group. Thus, 
each child belonged to the Highest quartile of the SES range or to the High Medium quartile 
or to the Low Medium quartile or to the Lowest quartile. We then calculated how the children 
in each quartile did in the Year 8 Mathematics Reasoning task separately within each group 
of schools with the same social composition. 
 
The four graphs in Figure 22 present the results of these calculations. Each graph shows the 
relationship between the children’s social background and their mathematical reasoning 
scores within each school group. The line in each graph represents the overall relationship 
between the children’s individual social background and their reasoning scores.  
 
Before we discuss the nature of the interaction, we should like to point out how well the 
graphs demonstrate the strong simple school effect. The figure shows how children from the 
same social background do much better if they go to a school in which the social composition 
of the pupils is relatively high than to one in which is relatively low.  
 
Notice, for example, that the mean mathematical reasoning score for children in the lowest 
social background quartile was close to 16 in the Bottom social composition group of 
schools, close to 20 in the Medium Low group, close to 22 in the Medium High group and 
close to 24 in the Top social composition group. Much the same pattern emerged for children 
in all other three SES quartiles. Thus, children at a school with a high level social 
composition are better at reasoning mathematically than children whose social backgrounds 
are exactly the same but who go to schools with a low level social composition.  
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Figure 24 - The relation between children’s SES and their mathematical reasoning 
scores  
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Turning to the interaction, the four graphs do indeed show that the relationship between 
children’s own social background and their mathematical reasoning differed between the four 
social composition school groups. The main difference was between the highest social 
composition group and the other three groups. There was no progressive increase in 
mathematical reasoning as a function of social background among the children in the Top 
group of schools, but this increase in results was strong and near to linear in the three other 
social composition groups. One, but not the only, reason why the highest group was different 
from the other three may have been that there were very few children in the lowest social 
quartile in these Top schools, and they may therefore have been unusual children. At any 
rate, the average mathematical reasoning score of these particular children was remarkably 
high. However, there must have been other reasons as well for the different pattern in the 
Top group of schools, since, even if the analysis omitted the children who came from the 
lowest SES backgrounds in the Top group, the relation between SES and mathematical 
reasoning would still have been different in this group than in the others. One possibility is 
that the education given to the children in the Top group of schools was more effective than 
in the schools in the other three groups and thus obliterated the usual relationship between 
social background and mathematical ability. However, another possibility is that the result 
may have been due to selection procedures in the top group schools. 
 
In contrast, the relationship between SES and mathematical reasoning was an important part 
of the pattern of mathematical reasoning scores in the other three social composition school 
groups.  Even in the lowest social composition group, which contained only children from the 
bottom two quartiles, there was a striking difference in the mathematical reasoning scores of 
children from the different quartiles. The quality of the education in these schools did not 
remove, and may not even have attenuated, the disadvantages that are clearly part of 
coming from a less privileged social background. 
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