

Music technology

Draft GCE A level and AS subject content

July 2015

Contents

The content for music technology AS and A level	3
Introduction	3
Aims and objectives	3
Subject content	4
Recording and production techniques for both corrective and creative purposes	4
Principles of sound and audio technology	7
Development of recording and production technology	8
Skills	8
List of acronyms	10

The content for music technology AS and A level

Introduction

1. AS and A level subject content sets out the knowledge, understanding and skills common to all AS and A level specifications in music technology.

Aims and objectives

- 2. Together with the assessment objectives subject content provides the framework within which the awarding organisations create the detail of their specifications, ensuring progression from a range of subjects at GCSE and development into higher education.
- 3. The specifications must provide access to higher education and university degree courses in music technology and music technology-related subjects.
- 4. AS and A level specifications in music technology must offer a broad and coherent course of study which encourages students to:
 - understand the principles of sound and audio technology and how they are used in practice
 - understand a wide range of recording and production techniques and how they are used in practice for both corrective and creative purposes
 - develop recording skills to demonstrate an understanding of sound and its capture
 - develop the skills to create and manipulate sound in imaginative and creative ways
 - develop skills in critical and analytical listening to evaluate the use of sound and audio technology in their own and others' work
 - develop an understanding of the historical and cultural contexts of the use of technology in the creation, performance and production of music
 - understand the interdependence of sound engineering knowledge, understanding and skills
 - make links between the integrated activities of recording, processing, mixing, sound-creation and creative music technology applications underpinned by analytical listening
 - understand the latest developments in music technology and the impact they have on the tonal qualities of recordings
 - develop and extend the knowledge, understanding and skills needed to create recordings and technology based compositions which communicate effectively to the listener
 - understand the history and traditions of the sonic and musical applications of technology in order to promote personal, social, intellectual and cultural development

- develop the skills required to manage music technology projects from inception to completion, by evaluating and refining recordings and technology-based compositions over extended periods of time
- develop as effective and independent students, and as critical and reflective thinkers with enquiring minds

Subject content

- 5. AS and A level specifications in music technology must build on the knowledge, understanding and skills established at key stage 4 and a range of GCSE qualifications.
- 6. AS and A level specifications in music technology must require students to develop an in-depth knowledge and understanding of:
 - recording and production techniques for both corrective and creative purposes
 - principles of sound and audio technology
 - the development of recording and production technology

And allow students to apply these, where appropriate, to their own work.

Recording and production techniques for both corrective and creative purposes

- 7. Specifications must require students to develop knowledge and understanding of:
 - software and hardware
 - capture of sound
 - sequencing and MIDI
 - audio editing
 - EQ
 - dynamic processing
 - effects
 - balance and blend
 - stereo
 - synthesis
 - sampling
 - automation
 - pitch and rhythm correction
 - mastering

8. Students will be expected to know and understand the following, and use in practical work as appropriate:

	At AS and A level	Additionally at A level
Software and hardware	 the core functions of a Digital Audio Workstation (DAW) detailed below in this table a range of hardware including microphones and audio interfaces 	 the advanced functions of a Digital Audio Workstation (DAW) detailed below in this table new and emerging software the impact of new and emerging software on music production
Capture of sound	 gain-structure and how it affects noise and distortion the characteristics and suitability of microphone types e.g. dynamic, condenser the suitability of microphone techniques e.g. distances 	 the advantages and disadvantages of microphone types in terms of polar response advanced microphone techniques e.g. coincident pair how microphones work including microphone sensitivity, electromagnetic induction and capacitance
Sequencing and MIDI	real time inputstep inputquantisevelocity and note length	 how MIDI works by studying data bytes data bytes including note on, pitch, controllers, pitch bend LSB and MSB
Audio editing	truncatinghow to remove clicks and noise	 how and why clicks and noise occur e.g. discontinuous waveforms
EQ	different types of EQ in a recording e.g. low-shelf, high- shelf, band, LPF, HPF	 how different parameters affect sound how to draw graphs of EQ e.g. Q, gain, frequency
Dynamic processing	 different uses of compression and gating how to adjust threshold and ratio on a compressor in a recording 	 how to use advanced parameters of a compressor e.g. attack, release, knee, sidechain how to draw graphs of compression and gating

Effects	reverb, delay, flange, chorus and distortion in a recording	effects including ADT and autotune;
	the core parameters including reverb time and delay time	detailed parameters including reverb pre-delay time and delay feedback
Balance and blend	the relative balance of parts (tracks, instruments and/or vocals)	how compression, EQ and effects affect blend
Stereo	how to identify pan positions of individual parts (tracks, instruments and/or vocals) in a recording	panning law, mono-summing and mid-side processing
Synthesis	how synthesis is used to create different sounds by using oscillators, filters, envelopes and LFOs	how timbre is affected by a wider variety of parameters e.g. cut-off frequency, resonance, attack, decay, sustain, release, graphs, and mapping of envelopes to filter cut-off frequency
Sampling	pitch mapping, cutting/trimming and looping	 the use of samples in new contexts to create new meanings or effect sample rate, bit-depth, other synthesis parameters e.g. filter and envelope
Automation	how to use volume and pan automation	how to automate parameters of plug-ins e.g. cut-off frequency, delay feedback
Pitch and rhythm correction	how to correct inaccuracies in pitch and rhythm e.g. by re- tuning a vocal part or tightening the rhythm in a drum part	the parameters that allow greater control and creativity e.g. response time, transient detection threshold and groove templates
Mastering	limiting and perceived volume	 parameters e.g. limiter gain understanding how EQ works in the mastering process

Principles of sound and audio technology

9. AS and A level specifications must require students to develop knowledge and understanding of:

	At AS and A level	Additionally at A level
Acoustics	how the live room acoustics affect the recording	acoustics including describing a reverb tail e.g. pre-delay time, early reflections and reverberation time
Monitor speakers	the characteristics of different monitor speakers e.g. woofer, tweeter	 how monitor speakers work (electromagnetic induction) different types of monitor speakers and how they affect mix-translation
Leads	the different types and uses of leads including jack and XLR	 how leads and connectivity work including signal path, signal types and impedance the advantages and disadvantages of different leads and connectivity
Digital and analogue	 the differences between digital and analogue recordings the advantages and disadvantages of digital and analogue recordings 	the specifications of digital and analogue recordings and how they affect sound quality e.g. A/D and D/A conversion, tape, vinyl and streaming
Numeracy		 how to display information graphically e.g. in waveforms and EQ curves how to interpret graphs e.g. frequency response graphs and polar response graphs to understand how sound quality is affected technical numeracy including binary, formulae, logarithms, and how they are used in music technology how to make calculations to describe sound waves including waveforms, frequency, phase and amplitude

Levels	•	levels and metering including dB scales, psycho-acoustics, and when to use different scales including peak and RMS

Development of recording and production technology

- 10. AS and A level specifications must require students to develop knowledge and understanding of the history and development of recording and production technology from the 1950s through the eras of:
 - direct to tape and mono recording (c.1950 1963)
 - early multitrack (c.1964 1969)
 - large scale analogue multitrack (c.1969 1995)
 - digital recording and sequencing (c.1980 present day)
 - digital Audio Workstations (DAW) (c.1996 present day)
- 11. Through the context of the eras listed above AS specifications will require students to identify and describe how recording technology has been used to create and shape sound, in relation to:
 - electric and electronic instruments
 - · multi-track recording and equipment used
 - samplers
 - synthesisers
 - DAW
 - recording media from a number of significant eras
- 12. In addition through the context of the eras listed above A level specifications will require students to:
 - describe the technical function and operation of recording equipment identified through the eras
 - understand the impact of music technology on creative processes in the studio
 - understand the wider context of music technology and how it has influenced trends in music e.g. computer games, popular music, film score, soundscapes in art installations, sound effects for film

Skills

13. AS level specifications in music technology must require students to use the knowledge and understanding listed in paragraphs 8-12 to develop and demonstrate their ability to:

- use music production tools and techniques to capture sounds with accuracy and control
- manipulate existing sounds and music with technical control and style
- effectively use processing techniques to produce a balanced final mix
- develop competence as a music producer and sound engineer by producing recordings and technology-based compositions
- analyse critically and comment perceptively on music production techniques from a range of source material and their impact on music styles
- apply musical elements and language e.g. structure, timbre, texture, tempo and rhythm, melody, harmony and tonality, dynamics within the context of music technology
- use aural discrimination to identify and evaluate music technology elements in unfamiliar works and to refine recordings
- 14. In addition, A level specifications in music technology must require students to demonstrate the ability to:
 - create new sounds and music with technical control and style
 - develop effectiveness as a music producer and sound engineer by producing recordings and technology-based compositions
 - use aural discrimination and technical skill to refine technology-based compositions
 - apply the additional A level knowledge and understanding listed in paragraph 8-12 to extend the skills developed at AS level with increased technical control, sensitivity and creativity
 - make informed decisions about equipment by analysing and interpreting a range of data, graphical representations and diagrams relating to frequency response, microphone polar patterns and dynamic response

List of acronyms

Term	Definition
DAW	Digital Audio Workstation
MIDI	Musical Instrument Digital Interface
LSB and MSB	Least Significant Byte and Most Significant Byte
EQ	Equalisation
LPF and HPF	Low Pass Filter and High Pass Filter
Q	Quality
ADT	Automatic double tracking or Artificial double tracking
LFOs	Low Frequency Oscillation
A/D conversion	Analogue-to-digital conversion
D/A conversion	Digital-to-analogue conversion
dB Scales	Decibel Scales
RMS	Root-mean-square

© Crown copyright 2015

This publication (not including logos) is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

To view this licence:

visit www.nationalarchives.gov.uk/doc/open-government-licence/version/3

email psi@nationalarchives.gsi.gov.uk

write to Information Policy Team, The National Archives, Kew, London, TW9 4DU

About this publication:

enquiries <u>www.education.gov.uk/contactus</u> download <u>www.gov.uk/government/publications</u>

Follow us on Twitter: @educationgovuk

Like us on Facebook: facebook.com/educationgovuk