
Cookies on GOV.UK

We use some essential cookies to make this website work.

We’d like to set additional cookies to understand how you use GOV.UK,
remember your settings and improve government services.

We also use cookies set by other sites to help us deliver content from their
services.

View cookies

Research and analysis

Research review series: computing
Published 16 May 2022

Applies to England

Accept additional cookies

Reject additional cookies

 GOV.UK Topics Government activity

Home Education, training and skills Inspections and performance of education providers Research review series: computing

Print this page

Introduction
Digital technology is driving extraordinary global changes that some are calling the
Fourth Industrial Revolution.[footnote 1] Navigating these changes effectively and safely
requires a significant understanding of digital literacy, information technology and
computer science. This knowledge is also crucial if business, industry and individuals
are to exploit the opportunities offered by this revolution. The national curriculum
makes it clear that computing is mandatory at key stages 1 to 4 and that ‘a high-
quality computing education equips pupils to use computational thinking and creativity
to understand and change the world’.[footnote 2]

This review explores the literature relating to the field of computing education. Its
purpose is to identify factors that can contribute to high-quality school computing
curriculums, assessment, pedagogy and systems. We will use this understanding of
subject quality to examine how computing is taught in England’s schools. We will then
publish a subject report to share what we have learned.

The purpose of this research review is set out more fully in the ‘Principles behind

Contents

Introduction
Curriculum

Pedagogy
Assessment

Systems
Conclusion

https://www.gov.uk/help/cookies
https://www.gov.uk
https://www.gov.uk/
https://www.gov.uk/education
https://www.gov.uk/education/inspections-and-performance-of-education-providers
https://www.gov.uk/government/publications/research-review-series-computing
https://www.gov.uk/government/organisations/ofsted

Ofsted’s research reviews and subject reports’.[footnote 3]

Since there are a variety of ways that schools can construct and teach a high-quality
computing curriculum, it is important to recognise that there is no single way of
achieving high-quality computing education.

In this review, we have:

outlined the national context in relation to computing
summarised our review of research into factors that can affect the quality of
education in computing
considered curriculum progression in computing, pedagogy and assessment, and
the impact of school leaders’ decisions on provision

The review draws on a range of sources, including our ‘Education inspection
framework: overview of research’, which sets out the 3 phases of our curriculum
research.[footnote 4]

We hope that, through this work, we will contribute to raising the quality of computing
education for all young people.

Terminology
Many different terms are used in England, in the rest of the UK and internationally to
describe computing education, such as computing, computer science and
informatics. The research we have considered here uses all of these terms;
however, for the purpose of this review, we will use the standardised term
‘computing’, as this is the name given to the subject in the national curriculum.

National context
Computing in the national curriculum replaced information and communication
technology (ICT) in 2014. This followed successful representations by those in
industry, academia and subject groups. Some felt that the ICT curriculum focused
too heavily on office skills and did not allow pupils to develop knowledge that enables
technical innovation.[footnote 5] The government’s own consultation on the change
highlighted negative views of curriculum content.[footnote 6] Larke observed that
‘overall, a narrative of ICT as academically weak and vocationally useless prevailed’.
[footnote 7] In contrast, computing education is considered to be important, because it
has social, cultural and economic benefits. Through computing education, pupils can
learn ‘powerful knowledge’, enabling them to become informed and active
participants in our increasingly digital society.[footnote 8] Despite its importance, in
2017 the Royal Society suggested that ‘computing education across the UK is
patchy and fragile’.[footnote 9]

The national curriculum for computing established computing as a foundational
discipline that every child studies. In England, the national curriculum states that
pupils should study computing until the end of key stage 4.[footnote 10] All pupils in
maintained schools are expected to study the national curriculum. Our handbook
states that ‘academies are expected to offer all pupils a broad curriculum that should
be similar in breadth and ambition’.[footnote 11]

Reception and primary

“

“

Pupils’ development of early computing knowledge is important. Grover, Pea and
Cooper have suggested that:[footnote 12]

Learners’ success in future engagement with computing will depend on how well
introductory curricula prepare them in both the cognitive and affective dimensions
of computational learning.”

Computing is not part of the latest statutory framework for the early years foundation
stage,[footnote 13] but is part of the national curriculum from Year 1. Recently, there has
been a debate on learning computing in the first years of schooling and the
importance of getting it right.[footnote 14] Several studies have demonstrated that young
pupils are able to wrestle successfully with the core concepts of computing, including
more technical subject content such as programming and robotics.[footnote 15] That
said, it is important that children experience teaching informed by expertise.[footnote 16]

The national curriculum sets out the content that primary school pupils should learn in
computing.[footnote 17] A 2017 report by the Royal Society identified that primary-age
pupils typically have 1 hour a week of computing education; however, the research
informing the report noted that this varies and there are a small number of primary
schools where pupils receive no computing education at all.[footnote 18] Three years
after the new programmes of study for computing were introduced, the same
research found that teachers saw computing as the ‘future’ and felt that there was a
clear rationale for teaching the knowledge and skills required. Alongside these
positive aspects it also found that:[footnote 19]

Primary school teachers unfavourable to the new curriculum described the
requirements as being too advanced for the available physical resources and
budget, that staff lack the required skill-set and knowledge to teach the subject,
and that the language used in the curriculum is overly-technical.”

The research also highlighted that the main obstacle to teaching computing faced by
teachers was a lack of technical subject knowledge. An international study from 2019
found that many primary school teachers were concerned about their own personal
subject knowledge and the resources available to teach the intended curriculum.
[footnote 20]

Secondary
As in primary schools, the national curriculum sets out the subject content all pupils
should learn in secondary school.[footnote 21] This includes provision for all pupils to
study computing in key stage 4.

The 2017 report by the Royal Society highlighted that 1 hour a week of computing
teaching was not adequate to teach the key stage 3 curriculum.[footnote 22] A recent
report using government census data showed that the amount of curriculum time
allocated to computing in key stage 3 fell from an hour to just over 45 minutes
between 2012 and 2017.[footnote 23] The same report suggested that pupils in key
stage 4 who are not studying a computing qualification receive little timetabled
computing education. These findings suggest that not all pupils are receiving
sufficient curriculum time to learn the computing subject content set out in the
national curriculum.

There are a number of computing qualifications that pupils can complete at key stage
4. These include the computer science GCSE and a range of non-GCSE
qualifications; however, the Royal Society highlighted concerns from teachers about
the credibility of such non-GCSE qualifications and how well they cover the scope of
subject content.[footnote 24]

An analysis of government statistics of examination data to understand pupils’

access to computer science qualifications in schools in 2018 showed that:[footnote 25]

the number of schools offering GCSE computer science had increased, with
nearly 80% of Year 11 pupils in schools that offered a GCSE in computer science
state schools with higher proportions of disadvantaged pupils were less likely to
offer a GCSE in computer science
7.6% of pupils were in a school that did not offer key stage 4 computing
qualifications

This data highlights that, although access to computing education is improving for
most pupils, there are still inequities in provision.

After computing was introduced into the national curriculum, there was a rapid
increase in the number of pupils studying computing GCSE qualifications. A-level
computing has also seen a sharp increase in the number of entries, which have more
than doubled since 2016.[footnote 26] However, the number of pupils entering A-level
computing is still much lower than the number entering subjects like biology,
chemistry and physics. Despite the increase in the number of pupils studying
computer science, the total number studying computing qualifications at key stage 4
fell substantially. This is in large part due to the withdrawal of ICT GCSE in 2019.
[footnote 27]

Gender
Ten years ago, we reported on the gender imbalance in ICT, noting that the ‘number
of girls entered [for GCSE ICT] continued to lag behind boys and the percentage of
girls entering AS and A level has remained static at around 35% of the cohort’.[footnote
28] This gender imbalance is significantly higher in the new subject of computing.
Analysis of examination data from 2021 shows that there are disproportionately few
girls in computer science: they make up only 21% of entries at GCSE and only 15%
of entries at A level.[footnote 29] This data adds to a continuing trend of low entries for
girls.

In 2017, the Royal Society reported that gender balance was ‘the most significant
diversity issue’ in the subject.[footnote 30] A recent snapshot survey of 350 girls aged
14 to 18 provides some supporting evidence to this. Over a quarter of respondents
said that the subject is boring and nearly a fifth said that they lack interest.[footnote 31]

Some respondents also inferred confidence in their ability as a reason for why they
did not choose computing for further study.

Other organisations have noted the gender imbalance in computing. For example,
The Wellcome Trust found that, by Year 9, there was a large gender divide in the
subject, with less than half the number of girls finding the subject interesting
compared with boys. The same report noted that, from Year 7 to Year 9, computing
was the least enjoyed subject for girls.[footnote 32] Other research has indicated that
girls tend to underestimate their performance in programming compared with boys
and are less confident in their capacity to succeed in computing.[footnote 33] Research
has shown that, although girls outperform boys in computing, both girls and boys
underperform in the subject compared with their achievement in other subjects.
[footnote 34]

Recruitment/workforce
Teachers’ content knowledge and pedagogical content knowledge are important
factors in high-quality computing education. This is because this knowledge helps
teachers decide, for example, what to teach, how to question students about it and

how to deal with problems of misunderstanding.[footnote 35] However, research
consistently identifies that there is a lack of suitably qualified computing teachers to
teach the subject.[footnote 36]

A 2017 UK-wide survey of teachers with responsibility for computing education found
that only a small percentage of primary school teachers held a computer science
qualification as their highest qualification.[footnote 37] While primary school teachers
cannot be expected to hold specialist qualifications in all the subjects that they teach,
this research highlights the importance of subject-specific continuing professional
development (CPD) in primary schools.

In secondary schools, 46% of computing teachers held a computing qualification
(36% computer science and 10% ICT or business with ICT).[footnote 38] In 2018 and
2019, just under half of the hours taught in computing in secondary schools were
taught by a teacher with a relevant post-A-level qualification. This contrasts with other
EBacc subjects, where most hours were taught by subject specialists.[footnote 39]

Recruitment of computing teachers had been consistently below target since 2014.
[footnote 40] However, recent initial teacher training (ITT) census data shows that in
2020/21 recruitment targets for computing were met.[footnote 41] This represented a
30% increase over the previous year.[footnote 42] However, this sits alongside a 23%
increase in new entrants to ITT for all subjects, so may not be significant in the long
term.[footnote 43] A 2019 policy briefing drawing on government data highlighted that
the drop-out rate for teachers in ITT is higher in computing than in most other
subjects.[footnote 44] It also draws attention to research that identifies the salary
differentials between teaching and other areas of employment in computing.

Curriculum
This review explores the forms of knowledge that pupils need to learn in order to
make progress in computing. Ofsted’s education inspection framework (EIF) and the
research underpinning it are the lenses through which we have selected, considered,
framed, presented and connected relevant research and critical commentary. We
have also used findings from our overview of research and applied these critically to
arrive at a conception of a high-quality computing education.[footnote 45] This is
particularly the case for areas where there is limited research on the nature of a high-
quality computing education.

Pillars of progression
A useful way of thinking about progression in computing is to consider the 3 main
content areas that pupils develop knowledge of:

computer science
information technology
digital literacy

These ‘pillars’ of progression are recognised as areas of the curriculum by the Royal
Society and are visible in the aims of the national curriculum for computing.[footnote 46]

Pupils make progress in computing by knowing and remembering more about and,
importantly, across each of these categories,[footnote 47] and being able to apply this
knowledge. However, these pillars do not sit separately from each other. Knowledge
from each pillar complements the others and some subject content only exists at the
interplay between these 3 pillars.[footnote 48]

Declarative and procedural knowledge
This review draws a distinction between declarative and procedural knowledge in
computing.[footnote 49] Declarative knowledge, often referred to as conceptual
knowledge in the literature, consists of facts, rules and principles and the
relationships between them.[footnote 50] It can be described as ‘knowing that’. In
contrast, procedural knowledge is knowledge of methods or processes that can be
performed. It can be described as ‘knowing how’. Examples of declarative and
procedural knowledge across the 3 pillars can be seen in Table 1.

Table 1: Examples of declarative and procedural knowledge in computing

Form of
knowledge

Computer science Information
technology

Digital literacy

Declarative Programming syntax

The purpose and
function of different
logic gates

Principles of
effective
multimedia design

Spreadsheet
formulae

Features of
unreliable content

Procedural Performing binary
addition

Implementing a repeat
in a programming
language

Setting up a slide
master

Applying
conditional
formatting

How to perform an
advanced web
search

This distinction is helpful when considering knowledge within the subject. Many
aspects of computing use skills such as programming, creating digital artefacts and
being able to use a search engine. It is helpful to consider these skills in terms of
procedural knowledge, as they are methods and processes that can be performed.
This makes identifying the knowledge required to perform these processes skilfully
much easier. They are enabled by declarative knowledge such as knowledge of
suitable data types and structures, knowledge of appropriate font sizes and styles
and knowledge of suitable key words to use when performing searches.

Based on the above, high-quality computing
education may have the following features

The planned curriculum includes a breadth of knowledge relating to
computer science, information technology and digital literacy.
Declarative knowledge (‘knowing that’) and procedural knowledge (‘knowing
how’) are identified, sequenced and connected in the curriculum.
Skilful use of technology is underpinned by procedural and declarative
knowledge.

Computer science
Computer science covers knowledge of computers and computation, including
concepts such as data, system architecture, algorithms and programming. Computer
science is seen as the core of computing and underpins the whole of the subject.

“

“

[footnote 51] Because of this, it is fair to say that computer science provides the
foundational knowledge required to understand and interpret the other areas of the
computing curriculum. Therefore, it is important that any computing curriculum is rich
in computer science knowledge.

Programming
Programming is an important part of the computing curriculum. In the national
curriculum, it appears throughout the programmes of study for computing. It allows
pupils to apply their knowledge of computer science through writing code to solve
problems. Peyton Jones describes programming as:[footnote 52]

…the lab work of computer science: it motivates, illuminates, and brings to life the
dry bones of theory. Without programming, computer science would be a dry,
theoretical husk of a subject. Imagine a music lesson where the students only
studied the rules of counterpoint or the structure of sonata form, but never brought
them to life by performing or composing such music!”

Building programming knowledge
Learning to program is considered to be difficult.[footnote 53] When pupils are learning
to program, they are often expected to learn different things at the same time, for
example:

programming constructs such as sequence, selection and repetition
programming language syntax and semantics
how to solve problems using programming

Programming is seen primarily as a skill that pupils develop. However, Schulte notes
that learning to program successfully involves learning a body of knowledge,[footnote
54] including knowledge of:

programming languages
tools like compilers and development environments
programming styles
standardised solutions to programming problems

A literature review from 2010 to analyse programme comprehension models
concluded that the ‘role of domain knowledge for comprehending programs seems
to be underestimated’ and that ‘novice programmers’ early comprehension models
can be characterized by a pattern of “holey knowledge” like an incomplete patchwork
quilt’.[footnote 55] That is to say that novice programmers have a fragile and incomplete
mental model for comprehending programs. This analogy of how pupils develop
programming knowledge puts into context a generic finding that was foundational to
the EIF, namely the role of schema, or structures of memory that build and link
knowledge over time. Experts have more detailed schema than novices.[footnote 56]

The problems that novices face in programming arise in part from a lack of organised
knowledge.[footnote 57]

Programming misconceptions and the notional machine
Teachers might be tempted to expect pupils to write code at the very early stages of
their programming education, before they know what that code will do. Du Boulay
describes this as:[footnote 58]

Learning to program is like learning to use a toy construction set, such as
Meccano, to build a mechanism, but as if inside a darkened room with only very
limited ways of seeing the innards of one’s creation working.”

Through this limited view it is easy to see how pupils might develop misconceptions.
Sorva notes that pupils’ programming misconceptions have some features in
common. For example, pupils ‘commonly lack a viable model of program execution.

In other words they fail to understand the notional machine they are learning to
control’.[footnote 59]

A notional machine is an abstracted mental model of how a program will be executed
within a programming language. Put simply, it is the knowledge of what a program will
do when it is run. The national curriculum expects pupils to ‘use logical reasoning to
predict the behaviour of simple programs’.[footnote 60] Building this mental model or
notional machine can be made possible through pupils developing knowledge of
what the code they write will do. If pupils do not develop a secure mental model of
how their programs will execute, they are more likely to make incorrect inferences
and may develop misconceptions.[footnote 61]

Programming language choice
A core element in the debate about programming in the curriculum and how to teach
it is the choice of programming languages. The national curriculum does not
prescribe programming languages beyond the need for 2 languages to be taught in
key stage 3, at least one of which should be textual.[footnote 62]

It is common for block-based languages such as Scratch to be used in primary
schools and to a lesser extent in secondary schools.[footnote 63] Block-based
programming languages can be useful in teaching programming, as they reduce the
need to memorise syntax and are easier to use. However, these languages can
encourage pupils to develop certain programming habits that are not always helpful.
For example, small-scale research from 2011 highlighted 2 habits that ‘are at odds
with the accepted practice of computer science’.[footnote 64] The first is that these
languages encourage a bottom-up approach to programming, which focuses on the
blocks of the language and not wider algorithm design. The second is that they may
lead to a fine-grained approach to programming that does not use accepted
programming constructs; for example, pupils avoiding ‘the use of the most important
structures: conditional execution and bounded loops’. This is problematic for pupils in
the early stages of learning to program, as they may carry these habits across to
other programming languages.

Further research has highlighted that, although block-based languages may help
novices to overcome the difficulties with syntax that they can face when learning to
program, they do not necessarily help pupils with the semantic and conceptual
difficulties.[footnote 65] It is therefore important that, if schools use block-based
languages, they consider how to design the curriculum to mitigate these potential
pitfalls.

It would seem logical that the knowledge pupils need in order to make progress
should dictate the programming languages that schools choose for them to learn.
However, this is not always true. A 2019 pilot study of curriculum implementation
across 7 countries found the opposite: ‘Interestingly we expected that curriculum
would drive teachers’ motivations for selecting programming languages, however,
our results discovered this isn’t the case and that student-driven factors motivate
selection’.[footnote 66] These factors include teachers’ perception of how appropriate
the programming language is for the pupils’ age. Over half of the respondents in the
2019 study selected visual programming languages for pupils in all secondary year
groups. Cost and availability were other reasons for choosing programming
languages. Preferences of leaders and the demands of the curriculum appeared to
be less influential. Research indicates that the choice of programming language is
important and should be considered carefully.[footnote 67] The EIF highlights the
importance of selecting resources to match the ambitions of the curriculum.[footnote 68]

Computational thinking and problem-solving
When pupils solve problems in computing, this is often described as computational
thinking (CT). CT has gained great prominence in computing education. Reference to
CT can be found in the national curriculum and in GCSE exam specifications.[footnote
69] CT is a term stemming from Papert’s work in the 1980s;[footnote 70] more recently, it

has been popularised as a ‘fundamental skill for everyone’.[footnote 71] This is often
used to justify including computing in the curriculum. However, in their discussion of
the role of CT, Tedre and Denning point out that we should be cautious about the
scope of CT and avoid exaggerated claims that it develops problem-solving skills
that are transferrable to other domains.[footnote 72] Learning computing as a subject
and the knowledge related to CT is a worthwhile pursuit in itself, and does not need
to be justified with tenuous claims about broader benefits.

CT is uniquely conceived, and the literature on this subject uses a range of different
definitions. It has been claimed that it is important to have a clear definition of CT and
that teachers may ‘struggle with the various and conflicting interpretations of its
nature’.[footnote 73] As part of a project working with experts to define CT, Barr and
Stephenson state that CT is, in part, an ‘approach to solving problems in a way that
can be implemented with a computer’.[footnote 74] This definition makes designing the
curriculum to develop CT more straightforward, as the required declarative and
procedural knowledge can be identified and sequenced more easily. There are
widely accepted core elements of CT that can be used to form a curriculum.[footnote
75] Grover and Pea have produced a list of concepts and practices related to CT:
[footnote 76]

logic and logical thinking
algorithms and algorithmic thinking
patterns and pattern recognition
abstraction and generalisation
evaluation
automation

The above list sets out areas of problem-solving in computing; however, it does not
describe how pupils become better at problem-solving in these areas. These areas
do not develop through a ‘learned skill’; Tricot and Sweller argue that teaching
generic skills does not work and ‘learned skill, especially problem-solving skill,
derives primarily from the accumulation of a large store of domain-specific
knowledge stored in long-term memory’.[footnote 77]

A literature review carried out for the 2017 Royal Society report highlights this work
on the role of domain-specific knowledge in problem-solving and links this to other
areas explored later in this review, such as the use of subgoals.[footnote 78] CT can be
seen as difficult to teach,[footnote 79] which may be because there is no clear definition
of it, or a belief that it is a generic skill. Research shows that it is possible to design a
curriculum to teach CT. This requires a structured curriculum, with well-defined
content, instruction and activities, and suitable formative and summative assessment.
[footnote 80]

Based on the above, high-quality computing
education may have the following features

The curriculum is rich in computer science knowledge, enabling pupils to
make sense of the entire computing curriculum.
Pupils learn important programming knowledge to enable them to become
skilful programmers.
The curriculum sets out the knowledge pupils need to build a mental model
of program execution.
Programming languages are chosen to meet curriculum goals.
Development of CT and problem-solving is underpinned by domain-
specific knowledge that is identified and sequenced in the curriculum.

Information technology
Information technology provides a context for the use of computers in society. It
focuses on how computers are used in different sectors and describes the methods
used to create digital artefacts such as presentations, spreadsheets and videos. In
this review, we consider 2 content areas of information technology: digital artefacts
and computing contexts. We have chosen these areas because they appear in
computing programmes of study,[footnote 81] either explicitly in the case of digital
artefacts or implicitly for computing contexts.

Digital artefacts
Digital artefacts are digital objects created by humans. They can be created in a
range of media, including text, image, video and sound. It is important that pupils
learn the knowledge they need to be confident in using applications in creative
projects, including applications that analyse data or manipulate digital artefacts.
Declarative and procedural knowledge underpin pupils’ ability to create digital
artefacts using these applications.[footnote 82] Examples of this knowledge might
include:

commonly used formulae in spreadsheet software, and common methods of
manipulating data, such as sorting, filtering and charting
in image editing: knowledge of bitmap/vector images, layers and colour blending,
how to use masking, and how to edit and merge layers and apply filters
design principles, such as the ‘rule of thirds’, simplicity, and the use of white space
and design patterns

When developing digital artefacts, it is important that pupils can make judgements on
trustworthiness, to design products using recognised design elements and to design
with usability in mind.[footnote 83] The ability to do this is underpinned by specific
subject knowledge. Pupils should have sufficient curriculum time to learn this
knowledge, and to have repeated encounters with it to secure it across differing
media, products and sources.

Computing contexts
Knowledge of how computing is used purposefully is ‘empowering knowledge’.
[footnote 84] It sets out the transformative rationale for the subject and the profound
impact it has had on humanity. Knowledge of computing contexts chronicles the
history of the discipline and explains how computing is used in the modern world.
Pupils may learn about the early use of computers such as Colossus, which
contributed to saving lives in the Second World War, and technologies that have
transformed our lives, such as the internet and the range of services that use it.
Knowledge of computing contexts also includes emerging technologies and
associated fields, such as data science and artificial intelligence, which are set to
shape our future.

The computing programmes of study in the national curriculum state that pupils
should learn about common uses of technology beyond school, and about the
internet and the World Wide Web, and the opportunities they offer.[footnote 85] These
are computing contexts. We know from our review of previous research how
knowledge is stored in long-term memory through the building of a range of
schemata or complex structures that link knowledge and create meaning.[footnote 86] In
applying this general principle to computing contexts, pupils build knowledge in this
area by being taught about different contexts over time (breadth) but also by revisiting
these contexts and adding new knowledge to what they already know about them
(depth). In addition to learning about the contexts themselves, pupils should learn the
knowledge that links them together. This includes knowledge of the technologies that
enable such contexts, the laws that constrain their use and the ethical considerations
when technology intersects with society.[footnote 87]

For example, digital mapping is a common use of technology that pupils might learn
about. In primary schools, it might be appropriate to teach pupils about the use of
digital mapping and how they can drop a pin anywhere on a map to visit that location
virtually. Pupils develop knowledge of how this computing context is useful, such as
being able to view a location before visiting it. In secondary schools, this context may
be revisited to add to pupils’ existing schema by teaching them about the technology
that makes digital mapping possible: photos taken by camera arrays on vehicles are
stitched together automatically by computer algorithms to build a 3D representation.
Pupils may also learn about digital privacy and why faces and other sensitive details
are often blurred on these services. As pupils continue their study of computing, they
might be taught about the ethical considerations relating to such services and why
they are not permitted in certain locations or countries, further adding to their schema.

Based on the above, high-quality computing
education may have the following features

The curriculum to teach pupils how to create digital artefacts is
underpinned by specified declarative and procedural knowledge.
Pupils’ schemata of computing contexts is built through new and repeated
encounters with contexts to build a breadth and depth of knowledge.

Digital literacy
The National Centre for Computing Education defines digital literacy as the ‘skills and
knowledge required to be an effective, safe and discerning user of a range of
computer systems’.[footnote 88] It covers a range of knowledge and skills, such as
using physical devices or knowledge of the features that are likely to mean digital
content is reliable.

One of the barriers to pupils developing knowledge in digital literacy is the belief that
they are ‘digital natives’ and already experts in the use of digital devices. Schools
might assume that, because pupils have grown up in a world of technology, they do
not need to be taught how to use it.[footnote 89] Research indicates that teachers
should not make this assumption and that it is important to look at a range of
indicators to determine the levels of pupils’ knowledge in this area.[footnote 90] For
instance, there is evidence that many pupils do not fully consider the reliability of a
source and will usually consider it in terms of relevance and personal interest.[footnote
91] In a review of distance learning, the Chartered College of Teaching highlighted
that ‘despite often being regular users of technology, [pupils] may lack basic digital
literacy skills’.[footnote 92] Others go further and argue that the digital native is a fallacy
and that a curriculum based on this belief may make it difficult for pupils to acquire
new knowledge.[footnote 93] For pupils to use computing devices effectively, they need
to be taught how to use them.[footnote 94]

It is important that schools establish a carefully sequenced curriculum for e-safety
that builds on what pupils have already learned and identifies subject content that is
appropriate for their stage of development. In 2010, we found that, for e-safety:
‘There was a close relationship between the provision that the schools made and the
pupils’ knowledge and understanding’.[footnote 95] It is not enough to set out in the
school’s policy what pupils should know and remember. This should be rooted in the
design of the curriculum and taught by teachers who have had opportunities to
develop subject knowledge in online safety.

Based on the above, high-quality computing
education may have the following features

Teachers should not make assumptions about pupils’ prior knowledge
within digital literacy.
Knowledge and skills are clearly identified to teach pupils how to use
computing devices.
The curriculum carefully sequences knowledge related to e-safety to
ensure that subject content is appropriate for pupils at each stage of their
education.

Curriculum sequencing
In the previous sections, this review classified declarative and procedural knowledge
across key content areas of computing that pupils will learn throughout their time at
school. Winch argued that curriculum design should consider how to develop
expertise within the subject.[footnote 96] Webb and others build on this argument in a
computing context and highlight ‘a need for a structured approach to progression in
learning the basic facts and central concepts of the subject’ in curriculum design.
[footnote 97] These views align with the principles underpinning the EIF that the
curriculum is the progression model and that subject curriculums should focus on the
progression through the content to be learned.

Hubwieser notes that it is important to consider how knowledge components or
elements are sequenced when designing a curriculum and that ‘knowledge
determines the substantial and logical structure of the teaching process’. He
acknowledges that it is not possible to teach all computing knowledge and that it is
important to select the knowledge that is most important.[footnote 98] Ashbee states
that ‘a great deal of the knowledge in computer science is procedural and composite,
and this characteristic has implications for the structuring of the curriculum’. For
example, a pupil’s ability to evaluate the reliability of content and the consequences
of unreliable content is a composite. To do this well requires sufficient pre-requisite
knowledge. This might include knowledge of the types of content, features of
reliability, suitable examples of reliable and unreliable content and the potential
consequences. This knowledge will need to be carefully sequenced to ensure that it
is learned before pupils can be successful in this composite.

Computing is rich in abstract concepts that can be difficult for novices to learn. There
is a growing body of research into using ‘semantic waves’ to sequence subject
curriculums and teaching, to enable novices to develop expert knowledge over time.
[footnote 99] A semantic wave might start by introducing an abstract concept. The
teacher then unpacks the meaning of the concept by putting it into a different context,
using simpler, more concrete examples and pedagogical strategies such as
metaphors, unplugged activities and worked examples. This knowledge is then
repacked and linked back to the original abstract meaning.

Much of the work to explore the use of semantic waves in computing has focused on
sequencing across a single lesson.[footnote 100] Therefore, semantic waves could be
used to design a curriculum over different timescales, from a single unit of work to a
programme of study lasting months or years. An example of how this would apply to
the concept of algorithms is shown in Figure 1. Algorithms are introduced at an
abstract level as a sequence of steps. The meaning of this is unpacked by
comparing an algorithm to a recipe. Activities such as designing recipes are used to
teach this point in a concrete way. Teaching then makes a distinction between
recipes and algorithms, repacking knowledge back into the abstract form.[footnote 101]

Figure 1: Semantic wave structure[footnote 102]

Se
m

an
tic

 g
ra

vi
ty

an
d

se
m

an
tic

 d
en

sit
y

Time

Unpack m
eanings

Re
pa

ck
 m

ea
nin

gs

Algorithms are precise
sequences or steps

Activity using
instructions
or recipes

They are like
instructions/recipes

Distinguish between
recipes and algorithms

Abstract and complex
meanings

Concrete and simpler
meanings

Source: ‘Using semantic waves to improve explanations and learning activities in computing’, Teach
Computing, February 2020. This source contains public sector information that is licensed under the Open
Government Licence v3.0.

Cross-curricular computing
There is some discussion and debate about integrating computing into other
curriculum subjects.[footnote 103] Some believe that elements of the computing
curriculum, such as those relating to information technology and digital literacy, can
be taught through other subjects.[footnote 104] Fluck and others note that integrating
computing across the curriculum could be difficult to argue against ‘if teachers are
knowledgeable, confident, fully trained in computer science and have adequate
resources’.[footnote 105] However, we know from what has been explored earlier in this
review that this is unlikely to be the case in most schools. In examining approaches to
implementing the curriculum, Fluck and others also note how cross-curricular
integration of similar subjects, such as ICT, was ineffective and put these subjects in
a vague place in the curriculum. Our own research in 2011 highlighted weaknesses in
taking a cross-curricular approach to teaching ICT.[footnote 106]:

Recent reviews of international trends found that schools take different approaches
to implementing a computing curriculum.[footnote 107] These range from teaching
computing as an independent subject to more cross-curricular approaches. One
review identified that these curriculum choices are often made in response to a lack
of curriculum time or specialist teachers.[footnote 108] This suggests that decisions
about curriculum design and implementation are sometimes, understandably, being
made to mitigate the effects of these factors rather than because it is the most
appropriate way for pupils to learn computing.

In secondary schools, computing is typically taught as a discrete subject; however,
this is not always the case.[footnote 109] In 2012, the Royal Society noted that the
concept-driven nature of the subject makes it more suited to a discrete curriculum
than a cross-curricular approach.[footnote 110] Additionally, a German study from 2010
that compared the effectiveness of different ways of teaching computing suggests
that pupils who were taught a discrete computing curriculum tended to perform better
than those who were taught through an integrated or cross-curricular approach.[footnote
111]

https://blog.teachcomputing.org/quick-read-6-semantic-waves/

Based on the above, high-quality computing
education may have the following features

Facts and essential concepts are sequenced to enable pupils to develop
expertise within the subject.
Component declarative and procedural knowledge are identified and
sequenced to enable pupils to be successful in learning complex ideas or
processes.
Decisions to teach the subject in a discrete or cross-curricular way are
based on how best to teach the intended curriculum.

Pedagogy
Computing is rich in complex knowledge. This can make it interesting for pupils to
learn. However, it also requires teachers to consider carefully how to teach the
subject content so that all pupils learn this important knowledge. Our previous review
of research highlighted the need to manage the cognitive load placed on pupils’
short-term memory.[footnote 112]

In applying this to computing, it is important to consider that elements of the subject
content have an intrinsically high cognitive load.[footnote 113] That is to say, the subject
content places great demands on a pupil’s short-term memory. In this section, we
explore ways to manage this cognitive load and help pupils remember what is taught.

Novice to expert
Computing has a history of incorporating self-directed modes of learning.[footnote 114]

However, some researchers have highlighted that these approaches do not benefit
novices and that explicit instructional guidance is important for pupils who lack
sufficiently high prior knowledge.[footnote 115]

Robins and others discuss the implications of this for computing education and note
that unguided approaches are not appropriate for novices.[footnote 116] It is therefore
important that teachers consider pupils’ level of expertise when deciding on teaching
approaches. Winch describes experts within the subject as those who have sufficient
knowledge to acquire knowledge and to challenge and reassess claims within the
subject.[footnote 117] Reflecting on this point, Webb claims that this level of computing
expertise ‘is not accessible to school students but comes in more advanced studies
beyond school’.[footnote 118]

Those who promote explicit instructional guidance acknowledge that ‘small group and
independent problems and projects can be effective – not as vehicles for making
discoveries, but as a means of practising recently learned content and skills’.[footnote
119] However, such activities should be used to develop expertise and not be seen as
simplified versions of expert practice.[footnote 120]

Worked examples
Computing is a subject full of problems for pupils to solve. These problems can,
however, be complex and difficult for those who are new to the subject. As noted

above, instructional guidance is important for pupils who are novices, and these
pupils require ‘scaffolding’ to help them develop knowledge.[footnote 121]

One approach to ‘scaffolding’ is using worked examples. Tuovinen and Sweller found
that students substantially benefited from worked examples in learning to use a
database program.[footnote 122] In this instance, worked examples made less
difference for those with more prior knowledge. Skudder and Luxton-Reilly have
suggested that using worked examples has positive effects that should transfer to
other computing contexts, such as programming problems. They also highlight the
benefits of worked examples to novices and their reduced effectiveness as pupils
develop expertise.[footnote 123] This difference in effectiveness of worked examples
between novices and experts has implications for curriculum sequencing. The use of
faded worked examples, where steps are removed from worked examples over time,
can be sequenced in the curriculum as pupils develop expertise.[footnote 124]

The use of worked examples can be supported by using labelled subgoals.
Subgoals are useful steps in solving complex problems and act as functional
components of the problem’s solution.[footnote 125] Labels are added to each subgoal
to explain its purpose. This scaffold helps novices to tackle the component parts of a
much larger problem. Subgoals can also help pupils see past the surface-level
features in problems and transfer this knowledge to new problems. This is because
the subgoals focus on abstract knowledge and not the surface features of the
problem.[footnote 126]

Margulieux and others discovered that novice students in undergraduate classes who
used subgoals in a block-based programming environment were able to complete
more steps, more quickly, than novice students who were not given subgoals.[footnote
127] This group were also better able to recall content subsequently. This work
highlighted the benefits of subgoals in reducing cognitive load. Robins and others
note a further study that found that pupils performed better in text-based
programming languages when using subgoals.[footnote 128] More recent findings from
schools have highlighted that subgoals are less useful for pupils with substantial prior
knowledge.[footnote 129]

Unplugged activities
Unplugged activities take an ‘approach of exposing children to the ideas of computer
science without using computers’.[footnote 130] This is particularly beneficial where
there is limited access to computing devices. A well-known example of an unplugged
activity is for pupils to create a set of instructions for a robot to make a sandwich,
which are then carried out by a teacher.[footnote 131]

Research from 2017 found that unplugged activities were one of the most common
pedagogical approaches taken by computing teachers in the UK.[footnote 132]

Unplugged activities can be useful in introducing computing concepts to pupils at the
early stages of their computing education.[footnote 133] However, when choosing
unplugged activities, teachers should pay careful attention to how the activity will
contribute to achieving curriculum goals. An analysis from 2012 identified that not all
unplugged activities are strongly linked to computing subject content.[footnote 134]

Furthermore, they might introduce misconceptions. For example, unplugged
activities to teach pupils about algorithms can be ambiguous and in opposition to the
unambiguous nature of algorithms as precisely defined procedures.[footnote 135]

Teachers should also consider pupils’ prior knowledge when selecting unplugged
activities, as these activities appear to be more useful when introducing new
knowledge. For instance, when pupils already possess knowledge related to the
activity, they can become uninterested in unplugged activities.[footnote 136] Research
also indicates that the use of unplugged activities may reduce pupils’ desire to study

computing when these are not well linked to computing concepts.[footnote 137]

Storytelling
Storytelling is one of the oldest methods of sharing and communicating knowledge.
Psychologists refer to stories as ‘psychologically privileged’.[footnote 138] This means
that they are organised differently in memory than other types of content. The story of
the ‘Cat in the hat!’ by Dr Seuss, for example, is a memorable way of helping pupils
understand the computing concept of recursion, with increasingly smaller cats
appearing to clean a bath tub.[footnote 139]

The structure of stories is important. Willingham highlights that curriculum content can
be organised within the lesson using the structure of stories, for example, using
causality, conflict, complications and character as a framework for sequencing
lessons.[footnote 140] Curzon and others highlight that in computing ‘the links from the
story to the technical concepts, again, have to be made clear – travelling the
semantic wave’.[footnote 141] This means that, if stories or analogies are used, they
should be linked back to the specific computing concept they represent. The teacher
should make clear the differences and similarities between the representation and
the concept.

Textbooks
A policy paper from 2014 identified the importance of textbooks in high-performing
education systems.[footnote 142] This suggested that ‘a supply of high-quality textbooks
may provide considerable support to both teachers and pupils’, especially when
there is a gap in teachers’ subject knowledge. This is particularly relevant to
computing, where we have already noted the issue of teachers’ subject knowledge.
[footnote 143] A 2020 short discussion document commissioned by the Chartered
Institute for IT (BCS) School Curriculum and Assessment Committee reported that
key stakeholders felt that textbooks could be an important resource for teaching
computing and that textbooks can provide a progression model through the
hierarchical structure of the subject.[footnote 144]

Based on the above, high-quality computing
education may have the following features

Teachers consider pupils’ expertise and prior knowledge when selecting
teaching approaches, with novices requiring more explicit instruction.
The choice of teaching activities is strongly linked to the intended subject
content and helps achieve curriculum goals.
Teachers use worked examples appropriately to help pupils solve
problems.
Textbooks are used as a resource to support teaching in computing.

Assessment
Assessment in computing needs to determine whether pupils remember what they
are taught and can apply that knowledge as intended. When assessment drifts

“

towards checking generic competency-based outcomes, this can mean a loss of
focus on checking whether pupils have learned the component knowledge necessary
to understand something more complex or perform a more complex task.

Much of the research on assessment in computing focuses primarily on assessing
programming knowledge and CT.[footnote 145] There is an ‘urgent need’ for a better
understanding of formative assessment in computing that focuses on the building
blocks of knowledge or assessment that targets misconceptions.[footnote 146]

Assessment and testing can have negative connotations;[footnote 147] however,
research has shown that regular testing can have a positive effect on learning.[footnote
148] It can encourage pupils to study more, reduce their anxiety about tests and
increase their engagement with subject content.

Multiple-choice questions can be an effective tool in formative assessment to check
pupils’ understanding. If quick formative assessments such as multiple-choice
questions are well designed, they can help pupils remember important subject
content.[footnote 149] However, writing questions with plausible incorrect answers is
difficult.[footnote 150] There has been interest in the use of multiple-choice questions in
computing.[footnote 151] Lau describes a range of methods for using these in the
computing classroom, for example using cards, hands or applications.[footnote 152]

Computing classrooms typically have digital devices available that can make it easier
to deliver and analyse multiple-choice questions using online platforms. This also
allows both teachers and pupils to get immediate feedback to responses.[footnote 153]

A project has been established to ‘crowd source’ high-quality multiple-choice
questions for computing.[footnote 154]

Roediger and Karpicke have highlighted that the use of multiple-choice questions
can have negative effects on learning.[footnote 155] Incorrect answers can distract
pupils and reinforce misconceptions through the effects of retrieval on memory.
These negative effects can be eliminated by giving prompt feedback after asking the
question. Feedback can be prepared ahead of time, with follow-up questions
prepared as necessary.[footnote 156]

There have been calls for the development of concept inventories (CI) for aspects of
computing subject content.[footnote 157] CI are an assessment tool designed to
determine whether pupils have remembered important component knowledge. This
differs from other types of assessments, such as exams, which focus on performing
composite tasks. Parker and others encapsulate this in their development of CI for
undergraduate novice programmers, noting that:[footnote 158]

The distinction between achievement assessment and assessment of
learning is important, as achievement is the accumulation of learning up to a
certain time and learning is a change in student’s knowledge over time.”

CI have had a positive impact on learning in subjects such as science. Although there
has been limited research into the use of CI for computing education in schools,
there is some research that describes how to apply them.[footnote 159] It highlights the
importance of focusing assessment on component knowledge from the intended
curriculum.

There has been research into the use of automated tools for assessing computing.
Much of this work relates to the automatic assessment of programming knowledge.
[footnote 160] ‘Parsons problems’ are programming problems that focus on small
fragments of program code to enable pupils to learn syntactic constructs while
maintaining high levels of engagement.[footnote 161] They can be useful for targeting
specific knowledge in component programming and can help to identify
misconceptions. They are also an alternative to open-ended code-writing questions.
[footnote 162] Parsons problems are solved by arranging blocks of code in the correct
order. Focusing on small fragments of code reduces the scope of logic and the
pupil’s cognitive load.[footnote 163] The use of digital platforms to design and use
Parsons problems also allows for pupils to receive immediate feedback.

Research has highlighted that the use of adaptive problems (problems that change
based on responses) increases pupils’ success in solving problems and reduces
frustration.[footnote 164] Distractors (incorrect answers) are a useful element of Parsons
problems to help identify misconceptions; however, results from Harms and others
found that ‘the distractors increased learners’ cognitive load, decreased their
success at completing Parsons problems and increased learners’ time on task.
[footnote 165] Teachers should consider carefully how they use distractors in such
problems.

Based on the above, high-quality computing
education may have the following features

Assessment focuses on the knowledge and skills identified in the
curriculum and not generic competencies.
Formative assessment is used to identify misconceptions early.

Systems

Teacher subject knowledge
The research underpinning the EIF identified the importance of teachers’ subject
knowledge.[footnote 166] The Royal Society has highlighted that the levels of CPD
carried out by computing teachers are a source of concern. It found ‘large disparities
in the CPD hours undertaken by computing teachers, with some teachers not
receiving any CPD at all’.[footnote 167] This is true in England, where teachers have
been asked to teach a computing curriculum with little training.

In a 2017 study, Sentance and Csizmadia found that subject knowledge was the
most common challenge facing teachers in teaching a computing curriculum.[footnote
168] Training courses and additional materials can still leave teachers lacking the
confidence to help pupils with computing problems. In their discussion of computing
curriculum development in Israel and the United States, Gal-Ezer and Stephenson
highlighted that teachers’ lack of technical, content and pedagogical knowledge is
one of the challenges in designing and implementing computing curriculums. In a
small-scale study, Qian and others found that teachers who had computer science
degrees or who had received additional computing training were better at identifying
and addressing students’ misconceptions.

Given the importance of teachers’ subject knowledge, and the challenges they
continue to face in developing this, it is important that school leaders provide
sufficient subject-specific professional development to enable teachers to design
and teach a high-quality computing curriculum. This is particularly important for
computing, where a high proportion of teachers are unlikely to be subject specialists.
[footnote 169]

Timetabling/curriculum time
As noted earlier in this report, the amount of curriculum time afforded to computing
education is a significant concern within the sector. The Royal Society has found that

the typical time given to computing in the curriculum is insufficient to teach the
computing subject content in the national curriculum.[footnote 170] This, combined with
the trend for less time for computing in the curriculum, makes it even more difficult
for schools to achieve the aims of the national curriculum.[footnote 171] Reducing
computing curriculum time also increases the workload of teachers, who must meet
the same requirements of the curriculum in less time or provide a diminished
curriculum.[footnote 172]

Infrastructure
An ambitious computing curriculum may require teachers to use specialist software
and hardware, such as programming environments, microcontrollers, robots or
network devices. This requirement can often be at odds with the need to maintain
network security and performance in schools. In 2012, the Royal Society highlighted
features of school infrastructure as one of the main barriers to effective teaching of
computing and likened this issue to the impact of ‘overzealous implementation’ of
health and safety rules on school field trips and science experiments.[footnote 173]

In guidance to help those responsible for IT infrastructure, Computing at School
highlighted in 2013 that ‘it is possible to teach Computer Science with support from
senior leadership, a constructive dialog with the service provider and the cooperation
from a student body supported by a well understood Acceptable Use Policy’.[footnote
174] While pupils’ safety should be paramount for school leaders, it is important that
perceived risks are weighed up and not used to limit the computing curriculum,
unnecessarily denying pupils access to important knowledge and opportunities.

Based on the above, high-quality computing
education may have the following features

Teachers have access to high-quality computing CPD to develop and
maintain their subject knowledge.
Leaders and teachers use the expertise of subject communities to develop
teachers’ subject knowledge.
Adequate curriculum time is allocated to computing.
Stakeholders work together to ensure that risks are weighed up and do not
limit the ambition of the computing curriculum.

Conclusion
This review has explored a range of evidence relating to high-quality computing
education. It has drawn on research from many different countries and organisations.
It also builds from the same research base that underpins the EIF.

Computing education is important for pupils to make sense of and to contribute
positively to our technologically diverse world. This review has highlighted
approaches to constructing, sequencing and teaching a coherent computing
curriculum rich in computer science, information technology and digital literacy to
achieve this aim and the aims set out in the national curriculum. Central to this is the
importance of identifying and ordering the underlying knowledge that pupils require to
make sense of complex ideas or engage in composite tasks or activities within the
subject. Computing is rich in these ideas and tasks, so this is essential. To ensure

that pupils can make progress through the curriculum, it is important that teachers
check this knowledge so that pupils are ready for what comes next.

Computing lessons can place great demands on pupils’ working memory. Teaching
must work to manage this demand and ensure that pupils can think about the
intended subject content. Due to the hierarchical nature of many aspects of
computing subject knowledge, it is important that pupils’ prior knowledge is taken into
account when planning teaching and in the selection of teaching activities.

In this review, we have focused on the number of specialist staff in schools. The
number of subject specialists in computing is low, and there is a lack of new teachers
to improve the situation. This will have significant consequences for the quality of
education that pupils receive in computing if nothing is done to remedy the situation.
This further strengthens the argument for a focus on subject-specific CPD.

1. ‘Regulation for the Fourth Industrial Revolution’, Department for Business, Energy
and Industrial Strategy, June 2019; K Schwab, ‘The Fourth Industrial Revolution:
what it means and how to respond’, World Economic Forum, January 2016.↩

2. ‘National curriculum in England: framework for key stages 1 to 4’, Department for
Education, December 2014; ‘National curriculum in England: computing
programmes of study’, Department for Education, September 2013.↩

3. ‘Principles behind Ofsted’s research reviews and subject reports’, Ofsted, March
2021.↩

4. ‘Education inspection framework: overview of research’, Ofsted, July 2019.↩

5. I Livingstone and A Hope, ‘Next gen: transforming the UK into the world’s leading
talent hub for the video games and visual effects industries: a review by Ian
Livingstone and Alex Hope’, Nesta, 2011; S Furber, ‘Shut down or restart? The
way forward for computing in UK schools’, January 2012; LR Larke, ‘Agentic
neglect: teachers as gatekeepers of England’s national computing curriculum’, in
‘British Journal of Educational Technology’, Volume 50, Issue 3, 2019, pages
1,137 to 1,150.↩

6. ‘Consultation on (i) the order for replacing ICT with computing and (ii) the
regulations for disapplying aspects of the existing national curriculum’, Department
for Education, May 2013.↩

7. LR Larke, ‘Agentic neglect: teachers as gatekeepers of England’s national
computing curriculum’, in ‘British Journal of Educational Technology’, Volume 50,
Issue 3, 2019, pages 1,137 to 1,150, quote on page 1,139.↩

8. A Fluck, M Webb, M Cox, C Angeli, J Malyn-Smith, J Voogt and J Zagami, ‘Arguing
for computer science in the school curriculum, in ‘Educational Technology &
Society’, Volume 19, Issue 3, 2016, page XIX.↩

9. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017, page 6.↩

10. ‘National curriculum in England: framework for key stages 1 to 4’, Department for
Education, December 2014.↩

11. ‘School inspection handbook’, Ofsted, October 2021.↩

12. S Grover, R Pea and S Cooper, ‘Designing for deeper learning in a blended
computer science course for middle school students’, in ‘Computer Science
Education’, Volume 25, Issue 2, 2015, pages 199 to 237, quote on page 200.↩

13. ‘Statutory framework for the early years foundation stage’, Department for
Education, September 2021.↩

14. A Manches and L Plowman, ‘Computing education in children’s early years: a call
for debate’, in ‘British Journal of Educational Technology’, Volume 48, Issue 1,
2017, pages 191 to 201.↩

https://www.gov.uk/government/publications/regulation-for-the-fourth-industrial-revolution/regulation-for-the-fourth-industrial-revolution
https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond
https://www.gov.uk/government/publications/national-curriculum-in-england-framework-for-key-stages-1-to-4
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/principles-behind-ofsteds-research-reviews-and-subject-reports/principles-behind-ofsteds-research-reviews-and-subject-reports
https://www.gov.uk/government/publications/education-inspection-framework-overview-of-research
https://www.nesta.org.uk/report/next-gen/
https://royalsociety.org/topics-policy/projects/computing-in-schools/report/
https://www.gov.uk/government/consultations/consultation-on-i-the-order-for-replacing-ict-with-computing-and-ii-the-regulations-for-disapplying-aspects-of-the-existing-national-curriculum
https://royalsociety.org/topics-policy/projects/computing-education/
https://www.gov.uk/government/publications/national-curriculum-in-england-framework-for-key-stages-1-to-4
https://www.gov.uk/government/publications/school-inspection-handbook-eif/school-inspection-handbook
https://www.gov.uk/government/publications/early-years-foundation-stage-framework--2

15. MU Bers, C González-González and MB Armas-Torres, ‘Coding as a playground:
promoting positive learning experiences in childhood classrooms’, in ‘Computers
and Education’, Volume 138, 2019, pages 130 to 145; MU Bers, L Flannery, ER
Kazakoff and A Sullivan, ‘Computational thinking and tinkering: exploration of an
early childhood robotics curriculum’, in ‘Computers and Education’, Volume 72,
2014, pages 145 to 157; MU Bers, ‘The TangibleK robotics program: applied
computational thinking for young children’, in ‘Early Childhood Research and
Practice’, Volume 12, Issue 2, 2010.↩

16. A Manches and L Plowman, ‘Computing education in children’s early years: a call
for debate’, in ‘British Journal of Educational Technology’, Volume 48, Issue 1,
2017, pages 191 to 201.↩

17. ‘National curriculum in England: computing programmes of study’, Department for
Education, September 2013.↩

18. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

19. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017, page 36.↩

20. PJ Rich, SF Browning, MK Perkins, T Shoop, E Yoshikawa and OM Belikov,
‘Coding in K-8: international trends in teaching elementary/primary computing’, in
‘TechTrends’, Volume 63, Issue 3, 2019, pages 311 to 329.↩

21. ‘National curriculum in England: computing programmes of study’, Department for
Education, September 2013.↩

22. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

23. PEJ Kemp and M Berry, ‘The Roehampton annual computing education report:
pre-release snapshot from 2018’, University of Roehampton, May 2019.↩

24. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

25. PEJ Kemp and M Berry, ‘The Roehampton annual computing education report:
pre-release snapshot from 2018’, University of Roehampton, May 2019.↩

26. [‘National trends in A-level, AS-level and GCSE entries and grades’, FFT education
datalab.↩

27. ‘National trends in A-level, AS-level and GCSE entries and grades’, FFT education
datalab.↩

28. ‘ICT in schools: 2008 to 2011’, Ofsted, December 2011.↩

29. ‘National trends in A-level, AS-level and GCSE entries and grades’, FFT Education
Datalab.↩

30. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017, page 38.↩

31. ‘CAS: females and computing/computer science survey (2018)’, Computing at
School, May 2018.↩

32. ‘Young people’s views on science education: science education tracker 2019,
wave 2’, Wellcome Trust, March 2020.↩

33. M Kallia and S Sentance, ‘Are boys more confident than girls? The role of
calibration and students’ self-efficacy in programming tasks and computer
science’, in ‘Proceedings of the 13th Workshop in Primary and Secondary
Computing Education: WIPSCE ‘18’, Association for Computing Machinery,
2018.↩

34. PEJ Kemp, B Wong and MG Berry, ‘Female performance and participation in
computer science’, in ‘ACM Transactions on Computing Education’, Volume 20,
Issue 1, 2020, pages 1 to 28. The other subjects were French, German and
Spanish. Since the research was carried out, adjustments have been made to the

https://ecrp.illinois.edu/v12n2/bers.html
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://royalsociety.org/topics-policy/projects/computing-education/
https://royalsociety.org/topics-policy/projects/computing-education/
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://royalsociety.org/topics-policy/projects/computing-education/
https://www.bcs.org/more/bcs-academy-of-computing/the-roehampton-annual-computing-education-report/
https://royalsociety.org/topics-policy/projects/computing-education/
https://www.bcs.org/more/bcs-academy-of-computing/the-roehampton-annual-computing-education-report/
https://results.ffteducationdatalab.org.uk/
https://www.gov.uk/government/publications/ict-in-schools-2008-to-2011
https://results.ffteducationdatalab.org.uk/
https://royalsociety.org/topics-policy/projects/computing-education/
https://www.computingatschool.org.uk/teaching-resources/2012/september/national-reports-and-policy-documents
https://wellcome.org/reports/science-education-tracker-2019

grading standards in French and German to make grading less severe. ‘Grading
standards in GCSE French, German and Spanish’, Ofqual, November 2019.↩

35. LS Shulman, ‘Those who understand: knowledge growth teaching’, in ‘Educational
Researcher’, Volume 15, Issue 2, 1986, pages 4 to 14.↩

36. J Worth and J Van Den Brande, ‘Retaining science, mathematics and computing
teachers’, National Foundation for Educational Research, November 2019.↩

37. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

38. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

39. ‘Reporting year 2019: school workforce in England’, National Statistics, June
2020.↩

40. J Worth and J Van Den Brande, ‘Retaining science, mathematics and computing
teachers’, National Foundation for Educational Research, November 2019.↩

41. ‘Academic year 2020/21: initial teacher training census’, Department for Education,
December 2020; ‘School workforce in England; November 2020’, Department for
Education, June 2021.↩

42. ‘Initial teacher training (ITT) census for 2020 to 2021’, Department for Education,
December 2020.↩

43. ‘Academic year 2020/21: initial teacher training census’, Department for Education,
December 2020.↩

44. ‘Policy briefing on teachers of computing: recruitment, retention and development’,
The Royal Society, 2019.↩

45. ‘Education inspection framework: overview of research’, Ofsted, January 2019.↩

46. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017; ‘National curriculum in England: computing programmes of
study’, Department for Education, September 2013.↩

47. ‘Education inspection framework (EIF)’, Ofsted, July 2021.↩

48. W Lau, ‘Teaching computing in secondary schools: a practical handbook’,
Routledge, 2017.↩

49. AV Robins, LE Margulieux and BB Morrison, ‘Cognitive sciences for computing
education’, in ‘The Cambridge handbook of computing education research’, edited
by S Fincher and A Robins, Cambridge University Press, 2019, pages 231 to
275.↩

50. K Lawless and J Kulikowich, ‘Domain knowledge and individual interest: the effects
of academic level and specialization in statistics and psychology’, in
‘Contemporary Educational Psychology’, Volume 31, 2006, pages 30 to 43.↩

51. ‘National curriculum in England: computing programmes of study’, Department for
Education, September 2013; M Webb, N Davis, T Bell, Y Katz, N Reynolds, DP
Chambers and MM Sysło, ‘Computer science in K-12 school curricula of the 21st
century: why, what and when?’, in ‘Education and Information Technologies’,
Volume 22, Issue 2, 2017, pages 445 to 468.↩

52. S Peyton Jones, ‘Why we should teach children to code’, 2020.↩

53. S Sentance, J Waite and M Kallia, ‘Teaching computer programming with PRIMM:
a sociocultural perspective’, in ‘Computer Science Education’, Volume 29, Issues
2 to 3, 2019, pages 136 to 176; S Grover, R Pea and S Cooper, ‘Designing for
deeper learning in a blended computer science course for middle school
students’, in ‘Computer Science Education’, Volume 25, Issue 2, 2015, pages 199
to 237; B Du Boulay, ‘Some difficulties of learning to program’, in ‘Journal of
Educational Computing Research’, Volume 2, Issue 1, 1986, pages 57 to 73; S
Sentance and A Csizmadia, ‘Computing in the curriculum: challenges and
strategies from a teacher’s perspective’, in ‘Education and Information

https://www.gov.uk/government/publications/inter-subject-comparability-in-gcses
https://www.nfer.ac.uk/retaining-science-mathematics-and-computing-teachers/
https://royalsociety.org/topics-policy/projects/computing-education/
https://royalsociety.org/topics-policy/projects/computing-education/
https://explore-education-statistics.service.gov.uk/find-statistics/school-workforce-in-england
https://www.nfer.ac.uk/retaining-science-mathematics-and-computing-teachers/
https://explore-education-statistics.service.gov.uk/find-statistics/initial-teacher-training-census/2020-21#dataBlock-8e5c7366-9792-414a-b53e-783a4210f9c4-tables
https://www.gov.uk/government/collections/statistics-school-workforce
https://explore-education-statistics.service.gov.uk/find-statistics/initial-teacher-training-census/2020-21
https://explore-education-statistics.service.gov.uk/find-statistics/initial-teacher-training-census/2020-21#dataBlock-8e5c7366-9792-414a-b53e-783a4210f9c4-tables
https://royalsociety.org/topics-policy/publications/2019/policy-briefing-on-teachers-of-computing/
https://www.gov.uk/government/publications/education-inspection-framework-overview-of-research
https://royalsociety.org/topics-policy/projects/computing-education/
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/education-inspection-framework
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://helloworld.raspberrypi.org/articles/hw10-why-we-should-teach-children-to-code

Technologies’, Volume 22, Issue 2, 2017, pages 469 to 495.↩

54. C Schulte, ‘Block model: an educational model of program comprehension as a
tool for a scholarly approach to teaching’, ICER’08 – Proceedings of the ACM
Workshop on International Computing Education Research, 2008.↩

55. C Schulte, T Clear, A Taherkhani, T Busjahn and JH Paterson, ‘An introduction to
program comprehension for computer science educators’, in ‘Proceedings of the
Conference on Integrating Technology into Computer Science Education, ITiCSE’,
2010, quotes on page 83.↩

56. ‘Education inspection framework: overview of research’, Ofsted, January 2019.↩

57. AV Robins, LE Margulieux and BB Morrison, ‘Cognitive sciences for computing
education’, in ‘The Cambridge handbook of computing education research’, edited
by S Fincher and A Robins, Cambridge University Press, 2019, page 242.↩

58. B Du Boulay, ‘Some difficulties of learning to program’, in ‘Journal of Educational
Computing Research’, Volume 2, Issue 1, 1986, pages 57 to 73.↩

59. J Sorva, ‘Misconceptions and the beginner programmer’, in ‘Computer science
education: perspectives on teaching and learning in school’, edited by S Sentance,
E Barendsen and C Schulte, Bloomsbury Publishing, 2018, pages 171 to 187.↩

60. ‘National curriculum in England: computing programmes of study’, Department for
Education, September 2013.↩

61. J Sorva, ‘Misconceptions and the beginner programmer’, in ‘Computer science
education: perspectives on teaching and learning in school’, edited by S Sentance,
E Barendsen, and C Schulte, Bloomsbury Publishing, 2018, pages 171 to 187.↩

62. ‘National curriculum in England: computing programmes of study’, Department for
Education, September 2013.↩

63. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

64. O Meerbaum-Salant, M Armoni and M Ben-Ari, ‘Habits of programming in Scratch’,
ITiCSE ‘11: Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, 2011, quotes on pages 171 and
172.↩

65. S Grover and S Basu, ‘Measuring student learning in introductory block-based
programming: examining misconceptions of loops, variables, and Boolean logic’,
in ‘Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education’, Association for Computing Machinery, 2017.↩

66. K Falkner, S Sentance, R Vivian, S Barksdale, L Busuttil, and others, ‘An
international comparison of K-12 computer science education intended and
enacted curricula’, in ‘ACM International Conference Proceeding Series’,
Association for Computing Machinery, 2019, quote on page 9.↩

67. L Grandell, M Peltomäki, R-J Back and T Salakoski, ‘Why complicate things?
introducing programming in high school using python’, in ‘Proceedings of the 8th
Australasian Conference on Computing Education – Volume 52 January 2006
Pages 71 to 80’, 2006;↩

68. ‘Education inspection framework (EIF)’, Ofsted, 2021.↩

69. ‘National curriculum in England: computing programmes of study’, Department for
Education, September 2013.↩

70. S Papert, ‘Mindstorms: children, computers and powerful ideas’, Basic Books, Inc,
1980, page 182.↩

71. JM Wing, ‘Computational thinking’, in ‘Communications of the ACM’, Volume 49,
Issue 3, 2006, pages 33 to 35, quote on page 33.↩

72. M Tedre and PJ Denning, ‘The long quest for computational thinking’, in ‘ACM
International Conference Proceeding Series’, Association for Computing
Machinery, 2016.↩

https://www.gov.uk/government/publications/education-inspection-framework-overview-of-research
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://royalsociety.org/topics-policy/projects/computing-education/
https://www.gov.uk/government/publications/education-inspection-framework
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study

73. C Selby, M Dorling and J Woollard, ‘Evidence of assessing computational
thinking’, December 2014.↩

74. V Barr and C Stephenson, ‘Bringing computational thinking to K-12: what is
involved and what is the role of the computer science education community?’, in
‘ACM Inroads’, Volume 2, Issue 1, 2011, pages 48 to 54.↩

75. S Grover and R Pea, ‘Computational thinking in K-12: a review of the state of the
field’, in ‘Educational Researcher’, Volume 42, Issue 1, 2013, pages 38 to 43.↩

76. S Grover and RD Pea, ‘Computational thinking: a competency whose time has
come’, in ‘Computer science education: perspectives on teaching and learning in
school’, edited by S Sentance, E Barendsen and C Schulte, Bloomsbury
Academic, 2018.↩

77. A Tricot and J Sweller, ‘Domain-specific knowledge and why teaching generic
skills does not work’, in ‘Educational Psychology Review’, Volume 26, Issue 2,
2014, pages 265 to 283.↩

78. T Crick, ‘Computing education: an overview of research in the field’, April 2017,
pages 1 to 38.↩

79. T Crick, ‘Computing education: an overview of research in the field’, Issue April,
2017, pages 1 to 38.↩

80. S Grover, R Pea and S Cooper, ‘Designing for deeper learning in a blended
computer science course for middle school students’, in ‘Computer Science
Education’, Volume 25, Issue 2, 2015, page 3.↩

81. ‘National curriculum in England: computing programmes of study’, Department for
Education, September 2013.↩

82. E Barendsen, N Grgurina and J Tolboom, ‘A new informatics curriculum for
secondary education in the Netherlands’, in ‘Informatics in schools: improvement
of informatics knowledge and perception’, ISSEP, Springer, 2016.↩

83. ‘National curriculum in England: computing programmes of study’, Department for
Education, September 2013.↩

84. R Ashbee, ‘Curriculum: theory, culture and the subject specialisms’, Routledge,
2021.↩

85. ‘National curriculum in England: computing programmes of study’, Department for
Education, September 2013.↩

86. ‘Education inspection framework: overview of research’, Ofsted, January 2019.↩

87. R Ashbee, ‘Curriculum: theory, culture and the subject specialisms’, Routledge,
2021.↩

88. ‘Digital literacy within the computing curriculum’, Teach Computing, January 2021.↩

89. ‘The fallacy of the “digital native”’, International Computer Driving Licence, 2014.↩

90. EJ Helsper and R Eynon, ‘Digital natives: where is the evidence?’, in ‘British
Educational Research Journal’, Volume 36, Issue 3, 2010, pages 503 to 520.↩

91. T Lumley and J Mendelovits, ‘How well do young people deal with contradictory
and unreliable information online? What the PISA digital reading assessment tells
us’, paper presented at the the Annual Conference of the American Educational
Research Association, April 2012.↩

92. LM Muller and G Goldenberg, ‘Education in times of crisis: effective approaches to
distance learning’, Chartered College of Teaching, November 2021, quote on
page 8.↩

93. PA Kirschner and P De Bruyckere, ‘The myths of the digital native and the
multitasker’, in ‘Teaching and Teacher Education’, Volume 67, 2017, pages 135 to
142.↩

94. M Jakubowski, ‘Computers at schools: it’s not enough to have them and it’s not
enough to use them’, December 2014.↩

https://eprints.soton.ac.uk/372409/
https://royalsociety.org/topics-policy/projects/computing-education/
https://royalsociety.org/topics-policy/projects/computing-education/
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/education-inspection-framework-overview-of-research
https://blog.teachcomputing.org/digital-literacy-within-the-computing-curriculum/
https://www.icdleurope.org/policy-and-publications/the-fallacy-of-the-digital-native/
https://research.acer.edu.au/pisa/3
https://chartered.college/education-in-times-of-crisis-effective-approaches-to-distance-learning/
https://ibs.org.pl/en/publications/in-this-policy-paper-we-discussed-a-broad-range-of-topics-covering-student-access-to-computers-at-home-and-school-different-uses-of-computers-for-learning-and-the-impact-of-ict-use-on-different-groups/

95. ‘The safe use of new technologies’, Ofsted, February 2010, quote on page 4.↩

96. C Winch, ‘Curriculum design and epistemic ascent’, in ‘Journal of Philosophy of
Education’, Volume 47, Issue 1, 2013, pages 128 to 146.↩

97. M Webb, N Davis, T Bell, Y Katz, N Reynolds, DP Chambers and MM Sysło,
‘Computer science in K-12 school curricula of the 21st century: why, what and
when?’, in ‘Education and Information Technologies’, Volume 22, Issue 2, 2017,
pages 445 to 468.↩

98. P Hubwieser, ‘Computer science education in secondary schools – the
introduction of a new compulsory subject’, in ‘ACM Transactions on Computing
Education’, Volume 12, Issue 4, 2012.↩

99. K Maton, ‘Making semantic waves: a key to cumulative knowledge-building’, in
‘Linguistics and Education’, Volume 24, Issue 1, 2013, pages 8 to 22.↩

100. R Ashbee, ‘Curriculum: theory, culture and the subject specialisms’, Routledge,
2021.↩

101. ‘Using semantic waves to improve explanations and learning activities in
computing’, Teach Computing, February 2020.↩

102. Semantic gravity is defined as how context-dependent a concept is. Semantic
density defines concept complexity.↩

103. A Fluck, M Webb, M Cox, C Angeli, J Malyn-Smith, J Voogt and J Zagami, ‘Arguing
for computer science in the school curriculum, in ‘Educational Technology &
Society’, Volume 19, Issue 3, 2016, pages 38 to 46; M Webb, N Davis, T Bell, Y
Katz, N Reynolds, DP Chambers and MM Sysło, ‘Computer science in K-12
school curricula of the 21st century: why, what and when?’, in ‘Education and
Information Technologies’, Volume 22, Issue 2, 2017, pages 445 to 468; ME
Webb, T Bell, N Davis, YJ Katz, A Fluck, and others, ‘Tensions in specifying
computing curricula for K-12: towards a principled approach for objectives’, in ‘it –
Information Technology’, Volume 60, Issue 2, 2018, pages 59 to 68; O McGarr
and K Johnston, ‘Curricular responses to Computer Science provision in schools:
current provision and alternative possibilities’, in ‘Curriculum Journal’, Volume 31,
Issue 4, 2020, pages 745 to 756.↩

104. D Wells, ‘Embedding information and communication technology across the
curriculum – where are we at?’, in ‘Research in Teacher Education’, Volume 4,
Issue 2, 2014, pages 11 to 16; G Polizzi, ‘Digital literacy and the national
curriculum for England: learning from how the experts engage with and evaluate
online content’, in ‘Computers and Education’, Volume 152, 2020.↩

105. A Fluck, M Webb, M Cox, C Angeli, J Malyn-Smith, J Voogt and J Zagami, ‘Arguing
for computer science in the school curriculum, in ‘Educational Technology &
Society’, Volume 19, Issue 3, 2016, page XIX.↩

106. ‘ICT in schools: 2008 to 2011’, Ofsted, December 2011.↩

107. PJ Rich, SF Browning, MK Perkins, T Shoop, E Yoshikawa and OM Belikov,
‘Coding in K-8: international trends in teaching elementary/primary computing’, in
‘TechTrends’, Volume 63, Issue 3, 2019, pages 311 to 329; F Heintz, L Mannila
and T Färnqvist, ‘A review of models for introducing computational thinking,
computer science and computing in K-12 education’, IEEE Frontiers in Education
Conference (FIE), 2016, pages 1 to 9.↩

108. F Heintz, L Mannila and T Färnqvist, ‘A review of models for introducing
computational thinking, computer science and computing in K-12 education’, IEEE
Frontiers in Education Conference (FIE), 2016, pages 1 to 9.↩

109. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017; F Heintz, L Mannila and T Färnqvist, ‘A review of models for
introducing computational thinking, computer science and computing in K-12
education’, IEEE Frontiers in Education Conference (FIE), 2016, pages 1 to 9.↩

110. S Furber, ‘Shut down or restart? The way forward for computing in UK schools’,
The Royal Society, January 2012.↩

https://webarchive.nationalarchives.gov.uk/ukgwa/20120405120429/http://www.ofsted.gov.uk/resources/safe-use-of-new-technologies
https://blog.teachcomputing.org/quick-read-6-semantic-waves/
https://www.gov.uk/government/publications/ict-in-schools-2008-to-2011
https://royalsociety.org/topics-policy/projects/computing-education/
https://royalsociety.org/topics-policy/projects/computing-in-schools/report/

111. C Steer and P Hubwieser, ‘Comparing the efficiency of different approaches to
teach informatics at secondary schools’, in ‘Informatics in Education’, 2010, page
IX.↩

112. ‘Education inspection framework: overview of research’, Ofsted, January 2019.↩

113. P Hubwieser, ‘Computer science education in secondary schools – the
introduction of a new compulsory subject’, in ‘ACM Transactions on Computing
Education’, Volume 12, Issue 4, 2012; AV Robins, L Margulieux and BB Morrison,
‘Cognitive sciences for computing education’, in ‘The Cambridge handbook of
computing education research’, edited by SA Fincher and AV Robins, Cambridge
University Press, 2019, pages 231 to 275.↩

114. E Ackermann, ‘Piaget’s constructivism, Papert’s constructionism: what’s the
difference?’, in ‘Future of Learning Group Publication’, Volume 5, Issue 3, 2001,
page 438.↩

115. PA Kirschner, J Sweller and RE Clark, ‘Why minimal guidance during instruction
does not work: an analysis of the failure of constructivist, discovery, problem-
based, experiential, and inquiry-based teaching’, in ‘Educational Psychologist’,
Volume 41, Issue 2, 2006, pages 75 to 86.↩

116. AV Robins, L Margulieux and BB Morrison, ‘Cognitive sciences for computing
education’, in ‘The Cambridge handbook of computing education research’, edited
by SA Fincher and AV Robins, Cambridge University Press, 2019, pages 231 to
275.↩

117. C Winch, ‘Curriculum design and epistemic ascent’, in ‘Journal of Philosophy of
Education’, Volume 47, Issue 1, 2013, pages 128 to 146.↩

118. M Webb, N Davis, T Bell, Y Katz, N Reynolds, DP Chambers and MM Sysło,
‘Computer science in K-12 school curricula of the 21st century: why, what and
when?’, in ‘Education and Information Technologies’, Volume 22, Issue 2, 2017,
pages 445 to 468, quote on page 461.↩

119. RE Clark, PA Kirschner and J Sweller, ‘Putting students on the path to learning: the
case for fully guided instruction’, in ‘The American Educator’, Volume 36, 2012,
pages 6 to 11, quote on page 6.↩

120. C Winch, ‘Curriculum design and epistemic ascent’, in ‘Journal of Philosophy of
Education ‘, Volume 47, Issue 1, 2013, pages 128 to 146.↩

121. PA Kirschner, J Sweller and RE Clark, ‘Why minimal guidance during instruction
does not work: an analysis of the failure of constructivist, discovery, problem-
based, experiential, and inquiry-based teaching’, in ‘Educational Psychologist’,
Volume 41, Issue 2, 2006, pages 75 to 86.↩

122. JE Tuovinen and J Sweller, ‘A comparison of cognitive load associated with
discovery learning and worked examples’, in ‘Journal of Educational Psychology’,
Volume 91, Issue 2, 1999, pages 334 to 341.↩

123. B Skudder and A Luxton-Reilly, ‘Worked examples in computer science’, in
‘Proceedings of the Sixteenth Australasian Computing Education Conference,
Volume 148’, 2014, pages 59 to 64.↩

124. A Renkl, RK Atkinson, UH Maier and R Stanley, ‘From example study to problem
solving: smooth transitions help learning’, in ‘The Journal of Experimental
Education’, Volume 70, Issue 4, 2002, pages 293 to 315.↩

125. L Margulieux, R Catrambone and M Guzdial, ‘Employing subgoals in computer
programming education’, in ‘Computer Science Education’, Volume 26, Issue 1,
2016, pages 44 to 67.↩

126. AV Robins, L Margulieux and BB Morrison, ‘Cognitive sciences for computing
education’, in ‘The Cambridge handbook of computing education research’, edited
by SA Fincher and AV Robins, Cambridge University Press, 2019, pages 231 to
275.↩

127. LE Margulieux, M Guzdial and R Catrambone, ‘Subgoal-labeled instructional

https://www.gov.uk/government/publications/education-inspection-framework-overview-of-research

material improves performance and transfer in learning to develop mobile
applications’, in ‘Proceedings of the Ninth Annual International Conference on
International Computing Education Research’, ACM, New York, 2012, pages 71 to
78.↩

128. AV Robins, L Margulieux and BB Morrison, ‘Cognitive sciences for computing
education’, in ‘The cambridge handbook of computing education research’, edited
by SA Fincer and AV Robins, Cambridge University Press, 2019, pages 231 to
275.↩

129. LE Margulieux, BB Morrison, B Franke and H Ramilison, ‘Effect of implementing
subgoals in code.org’s intro to programming unit in computer science principles’,
in ‘ACM Transactions on Computing Education’, Volume 20, Issue 4, 2020.↩

130. T Bell, J Alexander, I Freeman and M Grimley, ‘Computer science unplugged:
school students doing real computing without computers’, in ‘New Zealand Journal
of Applied Computing and Information Technology’, Volume 13, Issue 1, 2009,
pages 20 to 29 quote on page 21.↩

131. ‘Unplugged activity: pb & j’, Microsoft MakeCode.↩

132. S Sentance and A Csizmadia, ‘Computing in the curriculum: challenges and
strategies from a teacher’s perspective’, in ‘Education and Information
Technologies’, Volume 22, Issue 2, 2017, pages 469 to 495.↩

133. WJ Rijke, L Bollen, THS Eysink and JLJ Tolboom, ‘Computational thinking in
primary school: an examination of abstraction and decomposition in different age
groups’, in ‘Informatics in Education’, Volume 17, Issue 1, 2018, pages 77 to 92.↩

134. R Taub, M Armoni and M Ben-Ari, ‘CS unplugged and middle-school students’
views, attitudes, and intentions regarding CS’, in ‘ACM Transactions on Computing
Education’, Volume 12, Issue 2, 2012.↩

135. J Waite, P Curzon, W Marsh and S Sentance, ‘Difficulties with design: the
challenges of teaching design in K-5 programming’, in ‘Computers and Education’,
Volume 150, 2020.↩

136. T Bell and J Vahrenhold, ‘CS unplugged — how is it used, and does it work?’, in
‘Lecture notes in computer science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics)’, Springer Verlag, 2018, pages
497 to 521.↩

137. R Taub, M Armoni and M Ben-Ari, ‘CS unplugged and middle-school students’
views, attitudes, and intentions regarding CS’, in ‘ACM Transactions on Computing
Education’, Volume 12, Issue 2, 2012.↩

138. DT Willingham, ‘Why don’t students like school?’, second edition, Jossey-Bass,
2021.↩

139. P Curzon, PW McOwan, J Donohue, S Wright and W Marsh, ‘Teaching of
concepts’, in ‘Computer science education: perspectives on teaching and learning
in school’, edited by S Sentance, E Barendsen and C Schulte, Bloomsbury
Publishing, 2018, page 94.↩

140. DT Willingham, ‘Why don’t students like school?’, second edition, Jossey-Bass,
2021.↩

141. P Curzon, PW McOwan, J Donohue, S Wright and W Marsh, ‘Teaching of
concepts’, in ‘Computer science education: perspectives on teaching and learning
in school’, edited by S Sentance, E Barendsen and C Schulte, Bloomsbury
Publishing, 2018, quote on page 93.↩

142. T Oates, ‘Why textbooks count: a policy paper’, Cambridge Assessment 2014.↩

143. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

144. J Woollard, ‘Textbooks for the teaching of computing’, 2020.↩

145. M Kallia, ‘Assessment in computer science courses: a literature review’, The Royal

https://minecraft.makecode.com/courses/csintro/functions/unplugged
https://www.cambridgeassessment.org.uk/news/new-research-shows-why-textbooks-count-tim-oates/
https://royalsociety.org/topics-policy/projects/computing-education/
https://eprints.soton.ac.uk/441674/

Society, 2017.↩

146. S Grover, ‘Toward a framework for formative assessment of conceptual learning in
K-12 computer science classrooms’, in ‘SIGCSE 2021 – proceedings of the 52nd
ACM technical symposium on computer science education’, Association for
Computing Machinery, Inc, 2021.↩

147. D Christodoulou, ‘Making good progress? The future of assessment for learning’,
Oxford University Press, 2017.↩

148. HL Roediger and JD Karpicke, ‘The power of testing memory: basic research and
implications for educational practice’, in ‘Perspectives on Psychological Science’,
Volume 1, Issue 3, 2006.↩

149. D Christodoulou, ‘Making good progress? The future of assessment for learning’,
Oxford University Press, 2017.↩

150. JL Little, EL Bjork, RA Bjork and G Angello, ‘Multiple-choice tests exonerated, at
least of some charges: fostering test-induced learning and avoiding test-induced
forgetting’, in ‘Psychological Science’, Volume 23, Issue 11, 2012, pages 1,337 to
1,344.↩

151. J Robinson, ‘Designing and using multiple choice questions in computing’, Teach
Computing, October 2019.↩

152. W Lau, ‘Teaching computing in secondary schools: a practical handbook’,
Routledge, 2017.↩

153. S Sentance, C Selby and M Kallia, ‘Assessment in the computing classroom’, in
‘Computer science education: perspectives on teaching and learning in school’,
edited by S Sentance, E Barendsen and C Schulte, Bloomsbury Academic, 2018,
pages 151 to 166.↩

154. ‘A collection of computing quizzes’, Project Quantum.↩

155. HL Roediger and JD Karpicke, ‘The power of testing memory: basic research and
implications for educational practice’, in ‘Perspectives on Psychological Science’,
Volume 1, Issue 3, 2006.↩

156. D Christodoulou, ‘Making good progress? The future of assessment for learning’,
Oxford University Press, 2017.↩

157. A Rachmatullah, B Akram, D Boulden, B Mott, K Boyer, J Lester and E Wiebe,
‘Development and validation of the middle grades computer science concept
inventory (mg-csci) assessment’, in ‘Eurasia Journal of Mathematics, Science and
Technology Education’, Volume 16, Issue 5, 2020.↩

158. MC Parker, M Guzdial and S Engleman, ‘Replication, validation, and use of a
language independent cs1 knowledge assessment’, in ‘ICER 2016 – proceedings
of the 2016 ACM conference on international computing education research’,
Association for Computing Machinery, Inc, 2016.↩

159. A Rachmatullah, B Akram, D Boulden, B Mott, K Boyer, J Lester and E Wiebe,
‘Development and validation of the middle grades computer science concept
inventory (mg-csci) assessment’, in ‘Eurasia Journal of Mathematics, Science and
Technology Education’, Volume 16, Issue 5, 2020.↩

160. M Kallia, ‘Assessment in computer science courses: a literature review’, The Royal
Society, 2017.↩

161. D Parsons and P Haden, ‘Parson’s programming puzzles: a fun and effective
learning tool for first programming courses’, in ‘Computing Education 2006.
Proceedings of the Eighth Australasian Computing Education Conference’,
Volume 52, edited by D Tolhurst and S Mann, Australian Computing Society, 2006,
pages 157 to 163.↩

162. S Sentance and M Kallia, ‘Assessment of computer science’, in ‘Computer
science education: perspectives on teaching and learning in school’, edited by S
Sentance, E Barendsen and C Schulte, Bloomsbury, 2018.↩

https://blog.teachcomputing.org/designing-and-using-multiple-choice-questions-in-computing/
https://diagnosticquestions.com/Quantum

Topics

Benefits

Births, death, marriages and care

Business and self-employed

Childcare and parenting

Citizenship and living in the UK

Crime, justice and the law

Government activity

Departments

News

Guidance and regulation

Research and statistics

Policy papers and consultations

Transparency

Is this page useful?

163. AV Robins, L Margulieux and BB Morrison, ‘Cognitive sciences for computing
education’, in ‘The Cambridge handbook of computing education research’, edited
by SA Fincer and AV Robins, Cambridge University Press, 2019, pages 231 to
275.↩

164. B Ericson, A McCall and K Cunningham, ‘Investigating the affect and effect of
adaptive parsons problems’, in ‘9th Koli Calling International Conference on
Computing Education Research (Koli Calling ‘19)’, Association for Computing
Machinery, 2019.↩

165. KJ Harms, J Chen and C Kelleher, ‘Distractors in Parsons problems decrease
learning efficiency for young novice programmers’, in ‘ICER 2016 – proceedings
of the 2016 ACM conference on international computing education research’,
Association for Computing Machinery, Inc, 2016.↩

166. ‘Education inspection framework: overview of research’, Ofsted, January 2019.↩

167. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

168. S Sentance and A Csizmadia, ‘Computing in the curriculum: challenges and
strategies from a teacher’s perspective’, in ‘Education and Information
Technologies’, Volume 22, Issue 2, 2017, pages 469 to 495.↩

169. ‘Reporting year 2019: school workforce in England’, National Statistics, June 2020;
P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

170. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

171. PEJ Kemp and M Berry, ‘The Roehampton annual computing education report pre-
release snapshot from 2018’, May 2019.↩

172. P Tait, ‘After the reboot: computing education in UK schools’, The Royal Society,
November 2017.↩

173. S Furber, ‘Shut down or restart? The way forward for computing in UK schools’,
January 2012.↩

174. B Lockwood and R Cornell, ‘School ICT infrastructure requirements for teaching
computing: a Computing at School (CAS) whitepaper’, Computing at School,
2013.↩

Yes No Report a problem with this page

https://www.gov.uk/government/publications/education-inspection-framework-overview-of-research
https://royalsociety.org/topics-policy/projects/computing-education/
https://explore-education-statistics.service.gov.uk/find-statistics/school-workforce-in-england
https://royalsociety.org/topics-policy/projects/computing-education/
https://royalsociety.org/topics-policy/projects/computing-education/
https://www.bcs.org/more/bcs-academy-of-computing/the-roehampton-annual-computing-education-report/
https://royalsociety.org/topics-policy/projects/computing-education/
https://royalsociety.org/topics-policy/projects/computing-in-schools/report/
https://www.gov.uk/browse/benefits
https://www.gov.uk/browse/births-deaths-marriages
https://www.gov.uk/browse/business
https://www.gov.uk/browse/childcare-parenting
https://www.gov.uk/browse/citizenship
https://www.gov.uk/browse/justice
https://www.gov.uk/government/organisations
https://www.gov.uk/search/news-and-communications
https://www.gov.uk/search/guidance-and-regulation
https://www.gov.uk/search/research-and-statistics
https://www.gov.uk/search/policy-papers-and-consultations
https://www.gov.uk/search/transparency-and-freedom-of-information-releases

Disabled people

Driving and transport

Education and learning

Employing people

Environment and countryside

Housing and local services

Money and tax

Passports, travel and living abroad

Visas and immigration

Working, jobs and pensions

How government works

Get involved

Help Privacy Cookies Accessibility statement Contact Terms and conditions Rhestr o Wasanaethau Cymraeg
Government Digital Service

 All content is available under the Open Government Licence v3.0, except where otherwise stated

© Crown copyright

https://www.gov.uk/browse/disabilities
https://www.gov.uk/browse/driving
https://www.gov.uk/browse/education
https://www.gov.uk/browse/employing-people
https://www.gov.uk/browse/environment-countryside
https://www.gov.uk/browse/housing-local-services
https://www.gov.uk/browse/tax
https://www.gov.uk/browse/abroad
https://www.gov.uk/browse/visas-immigration
https://www.gov.uk/browse/working
https://www.gov.uk/government/how-government-works
https://www.gov.uk/government/get-involved
https://www.gov.uk/help
https://www.gov.uk/help/privacy-notice
https://www.gov.uk/help/cookies
https://www.gov.uk/help/accessibility-statement
https://www.gov.uk/contact
https://www.gov.uk/help/terms-conditions
https://www.gov.uk/cymraeg
https://www.gov.uk/government/organisations/government-digital-service
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
https://www.nationalarchives.gov.uk/information-management/re-using-public-sector-information/uk-government-licensing-framework/crown-copyright/

	www.gov.uk
	Research review series: computing - GOV.UK

