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1 Introduction  
The aim of this report is partly to introduce in a fairly readable way some of the key ideas of 
fairly recent statistical methodology for modelling data on complex social structures including 
those in education. It reviews the ‘state of the art’ in the development of such methodology, 
and its software implementation. It also considers a wide range of examples and published 
applications which are either drawn directly from education or suggests potentialities in that 
area. 
Since many of the key ideas of statistical modelling of effects and the necessity for statistical 
control of variables are well established in traditional explanatory multiple regression this is 
considered first. This establishes important notions which are essential to understand as the 
statistical models become more complex. Section 2 then goes on to consider how data can 
arise from hierarchical structures such as pupils within schools and why standard regression 
models should be extended to encompass multilevel models. Examples from educational 
progress research are then considered to illustrate the applicability of such models and to 
further introduce major concepts such as variance components. A variety of relevant 
extensions and applications are then introduced to fix ideas further, 

Section 3 then considers that hierarchical structures and models to handle them are only the 
starting point for statistical modelling of complex reality. For instance it may be seen that not 
only do students nest themselves within schools but may also be lodged in a parallel hierarchy 
of area of residence which cuts across the school hierarchy. The example of education 
production functions incorporating both school and area effects are given. Further examples 
are given and then cross-classified random effects models are introduced as an appropriate 
way of handling data on such structures. We then examine some of the aims of such analyses. 
By considering some fairly complex repeated measures designs Section 4.1 reveals even more 
detailed structural complexity that falls into a cross-classified model framework. To formulate 
and understand the statistical aspects of the models some fairly detailed structured algebraic 
notation is required. This is outlined in Section 4.2. The detailed examination of a published 
application and its results in Section 4.3 illustrates the variety of detailed answers to research 
questions which may be revealed. This example which crosses-classifies students by 
secondary school attended with their previous primary school shows that achievement at 
secondary school may depend not only on the secondary school but also large carry over 
effects of prior primary school.  

Further complexity is introduced into models in Section 5 by introducing the idea of multiple 
membership. For instance, in an educational setting students can attend more than one 
institution, so that a strict hierarchy of students within institutions is no longer applicable. 
Effects on a response variable may thus consist of contributions from more than one unit at 
the institutional level. It is shown that by conceptualising these random effects as weighted 
contributions from these several units the multilevel modelling framework may be further 
extended. Classification diagrams and a more simplified notation are then discussed and 
together form a heuristic way of grasping the essential features of such complex structures. 
Section 5 then concludes by consideration of detailed examples where the multiple 
membership ideas are seen in practical operation. It is also seen how units with multiple 
memberships may also be combined with existing cross-classifications in illuminating ways. 
In an educational setting a set of students may be crossed with a set of teaching groups for the 
purposes of studying their GCE A levels. The various A level grades are nested within a 
cross-classification of students and teaching groups. Teachers may make contributions to 
several groups and also each group may be handled by several teachers during its operation. 
By conceptualising each grade response as being in multiple membership relation with the set 
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of teachers alongside a crossing of students and groups it is shown how the model framework 
enables the disentangling of the separate effects of individual student characteristics, group 
features, and teachers.  

Section 6 discusses the contrasting approaches that are taken to the estimation and statistical 
fitting of the complex models that have been discussed. In particular the focus is on the two 
approaches, Maximum Likelihood (ML) and Monte-Carlo Markov Chains, which are 
contrasted. The wide range of statistical software which has facilities for handling the model 
frameworks is also briefly evaluated. Some crucial features of MLwiN which is most widely 
used in the UK research community are outlined. The penultimate Section 7 considers a range 
of quite complex applications that have appeared in the literature. This comprehensive up to 
date review covers the following areas; health research, survey methodology and interviewer 
variance, social networks, veterinary epidemiology, animal ecology, genetics, transportation, 
missing unit identification, generalisability theory, psychometrics and additional education 
applications. Where possible attention is drawn to parallel structures in education where some 
of the methodology of the applications may have potential. The concluding section discusses 
briefly the way multilevel modelling has developed in a variety of other direction that have 
great potential in developing comprehensive methodological approaches. A final paragraph 
explains the richness that multilevel modelling has brought to methodology for complex 
situations but also warns against its inappropriate use and the dangers of over interpreting 
what it tries to do. 

2 Basic Multilevel Modelling in Hierarchical Social Structures 
2.1 Explanatory Models Using Multiple Regression  
The aim of many statistical models is to try and account for variation in some response 
variable by a set of one or more explanatory variables or effects. The possibility of connection 
to causal evaluation is a complex one and will not be pursued here. However, for a discussion 
of this issue in educational research the interested reader is referred to Goldstein (1997) or 
Fielding (2000), for example. Models used will depend on a number of considerations. One is 
the nature of the response. Initially in this review we will focus on those that are continuously 
measured, where multiple linear regression models are common. Another consideration is the 
structure of the available data or the design of a study. Of particular importance for present 
purposes will be complex structures involving hierarchies of units of observation. Multiple 
regression methods are then extended to accommodate these structures and this is the central 
aim of multilevel modelling. 
We will assume that the reader has some familiarity with the idea of multiple regression. 
However, it may be useful to outline some central ideas through an example. Suppose a 
researcher is interested in a relationship between the scores on a Key Stage 1 (KS1) Standard 
Assessment Task (SAT) of English children and their prior ability as indicated by a baseline 
test administered around two years previously. We might also believe that it might be fruitful 
to explore, for example, differences due to gender and family background (as indicated by 
whether they are eligible for free school meals or not). We might be interested in these for 
two reasons. Firstly there may be an interest in gender or family ‘effects’ on the response 
(SAT) in their own right. However, since they may also affect the prior ability measure we 
will wish to include them as ‘control’ variables. If we did not so include them any relationship 
we might observe between the response and prior ability might be partly if not entirely due to 
the common influence of these factors on both. At this stage we assume we have no 
information on the schools attended by sample data on pupils. We label as yi the SAT 
response observation for a particular pupil i, and correspondingly x1i the baseline score. Both 
gender and free school meal eligibility are binary variables taking only two values. These are 
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treated by ‘dummy’ indicators. Thus we have x2i =1 if the pupil is female and zero otherwise. 
Likewise we might define x3i =1 if the child is eligible for free school meals and zero 
otherwise. The usual multiple regression model for this situation is  

iiiii
exxxy ++++=

3322110
!!!! . 

The 
1i 2i 3i
x , x , and x  are observed as values of ‘explanatory’ variables and yi is the response or 

dependent variable observation. The coefficients 
3210

,, !!!!  are called parameters of the 
model and will be estimated in some way from the data.  
For later use it is also sometimes beneficial to use shorthand vector and matrix notation and 
alternatively write the model as 

iii
ey += âX .  

This is similar to the form in which it appears in many standard texts in econometrics for 
example and is adapted in the multilevel modelling literature and our later exposition. The 
vector 

i
X  is taken to mean a row vector },,,1{

321 iii
xxx containing observations on the 

explanatory variables with a leading element of unity. The latter which is constant across all 
variables is conveniently used to act as an artificial intercept variable. The â  is the column 
vector },,,{

3210
!""""  of parameters. When multiplied out using routine matrix operations 

=âX
i iiii

xxx
3322110

!!!! +++  

as in the above full algebraic specification of the model. 

The basic initial interest was in the size of the coefficient
1
! , the ‘effect’ of prior ability on 

SAT score. Since other variables are included in the model its interpretation is of an effect net 
of any possible indirect effects of the other variables. Put another way it will be the average 
conditional effect1 of prior ability holding gender and free school eligibility constant. Thus for 
a pair of specific values of these it indicates that a difference of one unit on the scale of prior 
ability will yield an expected difference of 

1
!  in the response. This point should emphasise 

the fact that explanatory variables in a model act as mutual controls for each other. The 
quantity 

0
!  is known as the ‘intercept’, interpreted as the expectation (average) of y when all 

the explanatory variables in the model take the value zero. We leave aside for now the role of 
ei except to note that it is usually assumed to average out at zero over pupils. For explanatory 
variables in a model that are continuous like x1, then the interpretation of their coefficients 
would follow in a similar way to that of

1
! . However, in this case they are not continuous but 

are dummies taking on values either zero or unity. In this case their coefficients in association 
with the intercept take on slightly special though intuitively similar meanings. From the way 
the variables have been defined we see that the intercept 

0
!  is the average SAT score (y) for 

male pupils (x2=0), not eligible for free school meals (x3=0) when the prior ability score (x1) 
is zero. To see this we can note that for these values the model specifies

ii
ey +=

0
! , and we 

have made the not unnatural assumption that ei averages out at zero. For these reasons male 
and eligibility for free school meals are often referred to as the base or reference categories 
for the indicators x2 and x3. It may be seen then that

2
! , or the net gender effect or the average 

difference between females and males for any pair of values of both prior ability and the free 

                                                
1 In econometrics literature this is sometimes called the ‘marginal effect’ in keeping with economics terminology 
of effects of changing an economic variable holding other contexts constant. We prefer ‘conditional’ since 
marginal in statistical models usually means the total effect. 
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school meals indicator. To reinforce this point a particular situation may be considered, for a 
child with zero prior ability score, i.e. x1 =0, and not eligible for meals, i.e. x3=0. Then the 
average y for females will be (

20
!! + ) to set against 

0
!  for males. Similar interpretations 

may be placed on the coefficient 
2

!  of the free school meals indicator. In regression models 
of this kind the coefficients of variables that have been explicitly included as explanatory in 
the model are often called ‘fixed effects’. Bearing in mind the facts we have noted about ei the 
regression  }{ 3322110 iii

xxx !!!! +++  is often taken in other contexts as a predictor  of y for 
given values of explanatory variables and is known as the ‘fixed part’ of the model. 

We have so far said very little about the role of the term ei in the model. This term is variously 
called the ‘disturbance’, ‘residual’, or ‘error’ and is pivotal to analyses using statistical 
models. It is sometimes also referred to as a ‘random effect’ for reasons which might become 
clear as we build up ideas. At its most basic level of interpretation the term is included 
because we can never hope to get a model to fit non-trivial empirical data exactly; however 
complex that model might be. We hope the model is a reasonable approximation to reality and 
this residual indicates the extent to which a fixed part prediction of y from the model deviates 
from its actual value. It can also be given interpretations in terms of measurement error in y or 
inherent uncertainty in the complex reality we are attempting to mirror statistically. However, 
another relevant interpretation in the present context is that it represents ‘unobserved 
variability’ in children’s SAT responses due to effects that we either cannot observe or do not 
explicitly include in the model. Apart from prior ability, gender, and free school meals we 
recognise that that there may be many other possible influential characteristics. These 
characteristics vary between children and may make their response higher or lower than that 
expected given their set of values on the explanatory variables we have included in the model. 
Our best hope is that in a reasonable model these sources of unobserved variability do not 
operate in a systematic way. In other words over children at given levels of the explanatory 
variables we assume that these residual effects average out to zero. Another consideration is 
that we assert that these unidentified explanatory variables are uncorrelated with the variables 
that are included in the model. If this is the case they will not exert any appreciable 
controlling or systematic influence on explicit net effects modelled.  
If the assumptions we have made about ei are true, then in fitting models to data we can treat 
them statistically as if they were random drawings from a statistical variable with the 
additional property that such drawings would average out at zero in the long run. It is for this 
reason they are an example of ‘random effects’. Later in our development we will also 
introduce other more complex types of random effect.  In a well developed model we would 
also like the ei to be small, or in other words the predictions of y from the model are judged 
reasonably close to the actual values. However, if there are other unaccounted for effects that 
are important influences in their own right, then ei might be large. This might be so whether 
or not the unidentified variables systematically affect the assessment of net effects of other 
variables in the model. If we could observe such a variable we would then perhaps want to 
extend the model specification by including it as a further explanatory variable in the fixed 
part. We note that this process is conditioned by our ability to both know and observe what 
such influences might be. Poor fitting models which may also have insufficient control often 
arise because of the inability to do these things. 
The size of all these possible combined sources reflected in the ei is indicated by the extent of 
the variability of the ei, as measured by its variance which is denoted by 2

e
! . The latter is 

another parameter of a model which can be estimated from the data. Indeed, although we do 
not explore algebraic detail it is also a basis for measures of ‘goodness of fit’ of a model. 
Good model building strategies to get well specified models will try and examine and include 
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as many important fixed effects as possible to get a good fit. This is part of the delicate art of 
statistical analysis. We could observe, for instance, in our example, whether a child had been 
to nursery school or not. It might be found further that in model development it had a large 
important net effect on SAT scores. Further this variable may be correlated with other 
explanatory variables and so might also indirectly influence the size of other estimated 
conditional effects. Without a nursery school effect included we might regard the initial 
model as somewhat poorly specified.   

All statistical models require assumptions and the impact of their breakdown is the subject of 
extensive and sometimes complicated statistical theory. Apart from the requirements of a 
reasonable model outlined previously we must also ensure that any proposed estimation or 
model fitting procedures possess certain desirable statistical properties. Some minimum 
assumptions are usually required to ensure these. Thus Ordinary Least Squares (OLS) 
estimation as used in traditional multiple regression models requires certain ‘classical’ 
assumptions. As we have hinted, and these are often uncontentious if models have been 
carefully thought out; firstly the residual random effects should have expectation zero and 
secondly they should be uncorrelated with explanatory variables in the model. Thirdly 
whatever the observation i, the variance of ei should be constant. Thus we should not expect 
variability of the random effect in an observation to be influenced by any particular 
characteristic of that observation. If the contrary is the case and we had what is often called 
‘heteroscedasticity’ the standard OLS framework will need re-thinking. Fourthly, the ei 
should be uncorrelated across observations. We should not, therefore, expect the size of the 
residual for a particular observation to be influenced in any way by sizes of residuals for other 
observations. As we shall see the breakdown of this latter assumption is one motivation for 
considering new model frameworks and estimation when we face more complex data 
structures. Lastly a common assumption is that each ei is normally distributed around zero 
with variance 2

e
! . We denote this by ),0(~ 2

ei
Ne ! . Though strictly necessary for inferences 

from OLS, the procedure is relatively robust if normality is not entirely valid. 
2.2 Hierarchical Data Structures And Multilevel Models  

The framework considered in the previous section may be unduly simplistic since almost all 
kinds of social and educational data have hierarchical or clustered structures often with 
several levels. For example, individuals (Level 1) live in households (Level 2) which in turn 
are nested within neighbourhood areas (Level 3); so this is a three level hierarchy. As another 
example of a three level hierarchy, primary school children (Level 1) are nested within 
schools (Level 2) which are grouped at Level 3 by Local Education Authorities (LEAs). A 
snapshot representation of this three level structure is shown in what is called a ‘unit’ diagram 
in Figure 1. It is possible that children are also clustered in well defined class groups within 
schools so that it might become a four level model. An example we will pursue further is 
information on all children taking KS1 SATS within schools in Birmingham LEA in a 
particular year. However, we will treat this as a two level structure with children within 
schools as there is only one LEA, so the 3rd level is not required. Because of shared school 
influences children from the same school will tend to be more like each other than pupils 
chosen at random from the population of children at large. For instance in a particularly 
effective school, most children may have a higher SAT score than expected from knowing 
just their individual characteristics, such as we have considered above. The relationship we 
have been examining is then constrained or modified by the shared membership of a 
particular school. The weakness of standard multiple regression is that it does not take 
account of the hierarchical structure of the data in that it focuses too much on individual 
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characteristics and ignores the location of the children in these shared contexts. Multilevel 
modelling is a way of explicitly including these contexts.  

 

 
 

 
 

 
 

 
 

 
 

Figure 1: A unit diagram for a three level structure of pupils within schools within Local 
Education Authorities 

 
The examples we have discussed are examples of hierarchies which may often be thought to 
arise naturally from data that is routinely collected.  Many designed experiments or quasi- 
experiments also create hierarchies.  An intervention may be carried out in several institutions 
with other institutions chosen as comparator controls. The data are collected on individuals 
within these institutions so we have a two level design (for an education intervention example 
see Thomas et al (2004)). Many national survey designs are cluster or multistage samples and 
also structure data hierarchically in this way by design. However, as Goldstein (1998) says, 
‘In formulating models that take account of such hierarchies we are concerned only with the 
fact of such hierarchies and not their provenance.’ Whatever the source of the groupings by 
level, members of a group can both influence and be influenced by the composition of the 
group and its other characteristics.  

Many traditional statistical analyses may be rendered invalid by ignoring these relationships 
and omitting the importance of group effects. To illustrate this let us consider early work in 
the education area by Aitkin et al. (1981). They re-analysed the data of Bennett (1976) who 
reported a statistically significant finding that formal styles of teaching improved the progress 
of children in reading. The finding had been based on traditional multiple regression analyses 
which treated the individual children as the only units of analysis and ignored their clustering 
within teachers and into classes. In the re-analysis, accounting properly for the effects of this 
hierarchy, the significant improvement disappeared and the progress of formally taught 
children was not discernibly better.  
In social structures, such as arise in education, effects which we wish to evaluate, unravel and 
explain operate in complex ways to match the complexity of the structures. So, it is important 
that design of investigations, data collection, and analytical models reflect these complexities. 
In the rest of Section 2 we will focus on strict hierarchies as a preliminary to even more 
complicated structures to be considered later.  It has become recognised over the past twenty 
years or so that multilevel statistical models provide the appropriate analytical approach. The 
example of Aitken et al (1981) is the first important example of multilevel analysis of social 

Pupils          P1    P2    P3    P4    P5    P6   P7   P8    P9   P10  P11 P12 

 LEA                 A1                                  A 2                     A3 

School             S1          S2                           S3                    S4 
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data, though it was not labelled as such at the time.  Multilevel analysis enables the derivation 
of information about relationships among measurements operating at different levels 
simultaneously.  

The early classic generic paper is Aitkin & Longford (1986). Thorough technical discussion 
of the theory, methodology and range of applicable models is provided by Goldstein (1995, 
2003). A good text which focuses essentially on educational examples is Raudenbush and 
Bryk (2002). Other texts requiring varying levels of statistical sophistication on the part of the 
reader are Kreft and de Leeuw (1998), Snijders and Bosker (1999), Hox (2002), and Heck and 
Thomas (2000). The articles by Paterson (1990), Paterson & Goldstein (1991), Rice and 
Leyland (1996), Plewis (1998) and Leyland & Groenewegen (2003) provide very readable 
introductions. Multilevel modelling is becoming increasingly complex and can get very 
technically demanding. There is an ever growing body of literature with articles and texts 
dealing with rapidly advancing methodology with a diversity of applicable subject matter (e.g.  
Duan and Reise (2000), Singer and Willett (2003)). Leyland and Goldstein (2001) edit a 
useful collection of articles dealing with a wide range of model developments and 
applications in the health area. 
2.3 Basic Ideas Through An Example 
Here we follow Goldstein (1997, 2003) in presenting fairly briefly the basic ideas, with a 
minimum of statistical complexity, as background for more advanced type of models in later 
sections. We will build up the idea of a multilevel model for a two level hierarchical structure 
in easy stages using as the motivating context the KS1 situation from the previous section. It 
will be somewhat artificial to start with since the aim is to communicate basic ideas. The 
exemplar ideas are based on the fuller analysis of Fielding (1999), where more elaborate final 
analytical models are presented. The responses are the KS1 results of 4444 children in a 
sample of 114 Birmingham LEA primary schools. This is a clustered design of schoolchildren 
at Level 1 within schools at Level 2. Here we might examine the Mathematics test and 
initially address the question of the extent to which it is influenced by measured achievement 
at baseline. The traditional initial approach would be to carry out a standard regression of test 
scores on baseline scores as outlined in the first section. In this case the model would 
be iii

exy ++=
110

!! . Here y represents the KS1 Mathematics score and x1  the baseline 
achievement. It would likely be further developed in traditional multiple regression by 
extending to cover the effects of variables such as gender or ethnicity of the children. Indeed, 
another motivation might have been to study gender differences in progress adjusting for 
initial ability.  

Such models do not recognise that pupils are taught in schools. They do not acknowledge that 
there may be shared influences from particular schools on children within those schools and 
that they may affect the relationships for those children. As it stands the model is to this 
extent incomplete. There may be influential ‘school effects’ which are every bit as important 
as other characteristics of the children. For example, it is possible that average test scores vary 
from school to school even after allowing for differential intake ability. We are admitting the 
possibility that this may be due to the school effects and an analysis that explicitly takes this 
into account is clearly desirable. Such an analysis has many advantages. 

Firstly it enables the analyst to obtain statistically efficient estimates of regression coefficients 
as effects of explanatory variables. In the above discussion we discussed how omission of 
control effects might give misleading impressions. This is no less true if school effects are not 
considered in some way. Secondly, and this is a technical issue, if we use information on the 
clustering into schools correct standard errors, confidence intervals and significance tests are 
provided. Generally ignoring the clustering will indicate standard errors for the coefficients 
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that are too low. As in the study of Bennet (1976) the use of such standard errors will inflate, 
for example, traditional ‘t’ statistics for regression coefficients so that they may be 
statistically significant. The use of correct standard errors will lower these values so that 
results may become insignificant. This impact has been known for a long time in the field of 
sample survey methodology. For cluster or multi-stage designs if standard errors use formulae 
which assume simple random sampling they will be underestimates. It is surprising how often 
in the not so distant past this has not been recognised for regression relationships. A third 
issue is that incorporating school effects enables us to explore the complexities of variation 
amongst schools. For example we can investigate the extent to which schools differ for 
different kinds of pupils. Goldstein et al (1993) found that schools show greater variation in 
GCSE results for students scoring higher on intake tests than they do for lower initial 
achievers. Fourthly an extended model may allow covariates or predictors measured at the 
higher levels of the hierarchy. The analysis can then investigate the extent to which variation 
amongst schools may be accounted for by such school factors as size of school, pupil teacher 
ratio, organisational practice, or concentration of pupils with certain social backgrounds. 
Finally in school effectiveness research there is often an interest in the relative ranking of 
schools based on the performances of their students after adjusting for intake characteristics 
and other relevant characteristics. This can be done most effectively using a multilevel model. 
However, Goldstein and Spiegelhalter (1996) point out the need for care with such rankings 
in that they may often be over-interpreted. They may be useful in identifying schools for 
further study which have extremely high or low rankings. However, they often have too much 
imprecision (very wide confidence intervals) for fine comparisons. 
To clarify some of the basic issues and also the meanings of levels and units we can consider 
some fairly simple hypothetical relationships. Consider firstly the usual simple scatter 
diagram in Figure 2. Here KS1 results for a few pupils in a particular school are plotted 
against their Baseline Scores. Also illustrated is a standard simple regression line from a basic 
model which might have been fitted to pupils at that school. The variation in actual KS1 
outcomes about this line is the level 1 residual variation since it relates to level 1 units 
(pupils) within this one school. If we were just interested in analysing this one particular 
school this approach might be appropriate. The residual variation would be represented as in 
the formulation in the previous introductory section by terms such as ei.    
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Figure 2: Level 1 Variation Amongst Pupils for One Particular School 

(X indicates scatter of 9 individual pupils) 
 

Now, however, imagine drawing several such diagrams one for each of a number of schools 
with level 1 residual variation about each of their separate lines. Figure 3 shows what 
hypothetically might happen if we draw separate lines for each school in our data with 
individual pupil data points removed.    

                                                                           

 
Figure 3: Regression Lines for Five Schools 

(Parallel lines with same slope but different intercepts) 
For simplicity of presentation we graph only five schools. We see that the school lines vary in 
their intercepts (the point at which they would cross the KS1 Mathematics axis). This is one 
particular form of level 2 variation and we will now focus on this situation in developing 

Baseline 
Score 

KS1 
Mathematics 

Baseline 
Score 

KS1 
Mathematics 
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ideas. It shows a situation where on average whatever the intake level certain schools are 
higher or lower than others by fixed amounts. This may be seen by noting that at any 
particular level on Baseline Score the difference between two schools in KS1 Mathematics 
levels on average is the vertical distance between the two schools above that point on the 
Baseline Score axis. Since the lines are parallel these distances are the same whatever point 
on the Baseline Score is chosen. However the net effect of differences between children’s 
intake score is the same within all schools as evidenced by the fact that the lines are parallel 
and hence have the same slope. Thus a change of one unit in the Baseline Score would be 
expected to lead to the same change in KS1 Mathematics whichever the School. 

By contrast Figure 4 shows a more complicated but more realistic situation for six schools; 
examples of which we will also return after developing more basic ideas. 

 

  
Figure 4: Level 2 Variation Amongst Six Schools in Both Intercepts and Slopes 

 
In this Figure not only do intercepts vary but so do slopes.  It is an example of multiple or 
complex level 2 variation since not only do schools vary in their average levels but the effect 
of baseline on KS1 may be different and specific for different schools. Thus for Schools 1, 2, 
and 3 with fairly steep slopes the effect of baseline is quite strong. In School 6 with a shallow 
slope it is relatively weak. Thus the conditional average difference in KS1 Mathematics for a 
pair of schools for pupils with a given level at baseline now varies according to that level. 
Vertical differences between lines are no longer constant along the length of the Baseline 
Score axis. There is now no single regression coefficient for baseline as we might have 
misleadingly analysed if we had used a traditional regression ignoring school differences. The 
variation in slopes is often referred to as a differential effect of baseline on KS1 amongst 
schools. If we examine the diagram we see that it also exemplifies the sort of situation 
envisaged by Goldstein et al (1993), as mentioned previously. At the lower end of the 
baseline range there is considerably less variation amongst school average KS1 scores than 
there is at the upper ends of the range.      

School 1 

School 2 

School 3 

KS1 
Mathematics 

School 6 

Baseline 
Score 

School 4 

School 5 
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For the moment we develop ideas in the context of the simpler situation of Figure 3.  To 
accommodate different intercepts for schools in a single model we extend a regression model 
to reflect that situation. The appropriate model becomes 

ij 0 j 1 1ij 0ijy x e! != + + .  

We note that we now need two subscripts one for each of the two levels to indicate, for 
instance, that yij refers to the response of the i’th pupil in the j’th school. It might also be 
noted that we have added an additional zero subscript in the residual term e0ij. This is for 
notational convenience since in later developments, as we shall see, we may introduce other 
random effects at the level of the pupil. We thus need a way to distinguish e0ij from such 
terms; it also proves useful in the equation presentation in software implementations. We also 
see that we now have 0 j!  with a subscript j relating to a particular school rather than just

0
! . 

This represents specific intercepts for schools which now may vary from school to school. To 
add greater emphasis to this a supplementary equation is often added;   

0 j o oju! != + . 

This equation stresses that a school’s intercept varies around an overall average
0

! , with oju  
the deviation of school j from this average. The mean of these deviations over schools is taken 
as zero. Substituting this back we get a model representation that is found in many texts and 
applications: 

ij 0 1 1ij oj 0ijy x u e! != + + + . 

We note that we have incorporated school effects into a single overall model rather than 
thinking about each school separately and this is a convenient way of thinking about a 
situation as in Figure 3.  One procedure for representing this sort of school effect is a standard 
multiple regression model as we previously described, using a set of dummy indicator 
variables for schools, with one less than the number of schools. We omit a dummy indicator 
for one of the schools which may be arbitrarily chosen. This school becomes the base against 
which other schools are referenced.  Thus if there are S schools indicated by s=1, 2, 3 …J and 
if we chose school 1 as the base this gives rise to (S-1) indicators; x2, x3,……xS say. A typical 
one xs has value unity if child i belongs to school s and zero otherwise. The model though 
essentially unchanged is re-formulated by dropping the uoj from the above and introducing 
these variables and a set of associated coefficients as in the multiple regression model. Indeed 
it is now treated as if it were such a model. The set of dummy indicators operate as fixed 
effects in much the same way as the female indicator for gender did in the first section but 
there are now many more of them. The reference school 1 is treated as the reference school 
against which each of the other schools is compared in the same equivalent way as female 
was contrasted with male.  
Fitting this type of model is formally equivalent to what is known as the Analysis of 
Covariance procedure for evaluating differences between a fixed set of schools adjusting for 
the covariate x1. In some circumstances where we have just a few schools and moderately 
large numbers of students within each school, this might be a reasonable approach. It might 
also be appropriate if we are just specifically interested in making inferences about those 
particular schools. However, if we regard the schools as a (random) sample from a larger 
population of schools we might wish to make inferences about schools in general. Thus in a 
multilevel model in much the same way as we might regard the e0ij terms as a random variable 
representing random unobserved effects operating at the child level we treat the oju  as a 
random drawing from the distribution of school effects. We usually assume that 
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0

2

oj uu ~ N(0, )!  and variance term 2

0
u

! sums up in one parameter the effect of school variation 
on the responses. With many schools this is statistically more efficient than estimating a large 
number of fixed school coefficients.  Moreover, if our large number of schools had very few 
students in each, fitting a standard model with school indicators will not yield very precise 
estimates of these school effects. Intuitively, if we do this, we are trying to stretch somewhat 
limited data to tell us about a large number of unknown parameters simultaneously and in 
statistical parlance we run out of degrees of freedom. In a random effects model we can 
achieve greater precision by regarding the schools as a sample from a population and use the 
information from the whole sample to ultimately ‘borrow strength’ in studying one particular 
school. The technical statistical aspects of what this implies are covered in any of the 
introductions to multilevel modelling we have referenced. There is another major 
disadvantage in using fixed effect indicators; we could not develop the model further by 
introducing observable school characteristics in an attempt to further explain the variation 
amongst schools. Although this is a technical limitation, the intuitive idea is that the overall 
fixed effects associated with the schools sums up all that can be known about differences 
between schools on the average level 1 response. In modelling terms the effect of particular 
school variables cannot be separately identified in a model that includes school fixed effects 
and it would be statistically impossible to fit such models. Using random effects resolves this 
identification problem. There is considerable debate, particularly in the econometrics of panel 
data analysis, about the respective roles played by fixed effects and random effects. Fielding 
(2004) considers these issues more fully. 

With the previous discussion in mind we can now summarise a basic multilevel model in a 
form similar to which it will appear in relevant literature. We write for the i’th student in the 
j’th school, 

ij 0 1 1ij oj 0ijy x u e! != + + + . 

),0(~ 2
0 oeij Ne !  

0

2

oj uu ~ N(0, )! . 

The term uoj is the school effect and gives the additional contribution (positive or negative) 
that a school makes to the predicted response score (yij) given the baseline score (xij). The 
coefficients 

10
, !!  have the usual interpretation. The model now has two random variables 

specifying two random sources of variation, at the level 1 of pupils (eij) and at level 2 of 
schools (u0j). In keeping with this such models are also often known as ‘variance components’ 
models.  The two components are  22

,
0 o

ue
!!  which need to be estimated along with

10
, !! . 

The total residual variance is { 22

00
ue

!! + ) and interest often centres on )/( 222

000 ueu
!!! + , the 

proportion of the total variance that is attributable to schools, as a summary of relative 
importance of school effects. There is another reason for this interest.  The clustering of 
pupils into schools induces a correlation between the responses of pairs of children who go to 
the same school as the previous general discussion has indicated. It can be shown that the size 
of this correlation, often known as the variance partitioning coefficient2 (VPC) is indeed this 
same quantity )/( 222

000 ueu
!!! + . This is one reason why traditional OLS is often inappropriate 

for the situation under consideration since its good behaviour depends on this correlation 

                                                
2 In sample survey design it is also known as the intra-class correlation (ICC) 
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being zero. Using OLS is tantamount to treating the total residual term in the model 
0ij oj 0ijw u e= +  as satisfying its assumptions when in fact within schools these terms are 

correlated. Methodologically, this was the main reason for the re-analysis by Aitken et al 
(1981) of the teaching styles data, to which we referred previously. The feature of our model 
that makes it multilevel is that we explicitly recognise that there are two random variables, 
one at each level of the data structure. Standard regression procedures which typically assume 
only a single random variable are inappropriate for such models. Special procedures for 
estimation and appropriate software are required (see the later Section 6). 
2.4 An Example Of A Basic Two Level Variance Components Model  
Table 1 represents results of applying two basic variants of these ideas to the data we have 
used as exemplar. The response variable is scored 0-4 for the various mathematics KS1 levels 
but standardised to have mean zero and standard deviation unity over the whole sample. In 
these results the only difference to the above basic model is that a full set of baseline 
measures will be used rather than a single score, yielding seven potential explanatory level 1 
variables rather than just one. Thus we are extending the fixed effects part of the model 
without affecting the generality of arguments about the components of the residual variances. 
Also in the first part of the table we present results for a model without any explanatory 
variables; the base variance components model. Such a base model is of the form 
ij 0 oj 0ijy u e!= + +  indicating that we might be interesting in seeing how student responses 

differ from an overall average, and then attributing these differences separately to school 
effects and individual effects. The presentation of a base model is often useful as a 
comparative reference to see where later developments of the model might lead us. The main 
point of interest of the base model is that schools seem to account for 20% of the total 
variance in KS1 mathematics. This is interesting but it relates to raw unadjusted achievement 
only without control variables. Thus the interpretation of such results in substantive terms 
must proceed with caution. The results in the table for the ‘model with reception baseline 
achievement controls’ are after the introduction of baseline measure covariates. The estimated 
regression coefficients show the influence of different baseline achievements net of other 
achievements and the school effect. The standard errors are now estimated within a multilevel 
model and are thus appropriate for inference. Shape and space has a small direct effect and 
formally would be statistically insignificant which might suggest dropping it in further model 
development. The baseline tests are all on the same standardised scale so it is appropriate to 
compare their estimated coefficients. On this scale number seems to exert the largest net 
effect. The level 1 variance has reduced by 34% emphasising the importance of prior 
achievement of individuals in explaining quite a bit of their variation on the KS1 outcome. 
The school variance has reduced only slightly. This, perhaps, may reflect aggregate ability of 
intakes of Birmingham schools not being widely different from each other. 
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 Base Variance Components Model Model with Reception Baseline 

Achievement Controls 

 Estimate(a) Standard Error Estimate(a) Standard Error 

Fixed Parameters 

Intercept  0.012 0.051 0.018 0.032 

Baseline Test Assessments: 4 point scale and standardised  

Number   0.30*** 0.016 

Algebra   0.18*** 0.015 

Shape and Space   0.02000 0.017 

Data Handling   0.10*** 0.016 

Speaking and Listening   0.09*** 0.017 

Reading   0.11*** 0.016 

Writing    0.08*** 0.018 

Random Parameters 

School variance 0.19 0.027 0.17 0.030 

Pupil variance 0.83 0.009 0.55 0.014 

Intra-school correlation (VPC) 0.19  0.23  

Table 1: Multilevel Model Results for Standardised KS1 Mathematics: Variance 
Components Model and Model with Baseline Assessments Adjustment Control (Source: 

Birmingham LEA data described more fully in Fielding (1999)) 
Note: (a) The *** indicates regression coefficient estimates that are significantly different 
from zero with p<.0.0001 using the appropriate statistical tests. On this criterion all estimates 
in this table are highly significant except for Shape whose net effect seems to have little 
predictive value when other baseline effects are included. But see footnote3 
Most multilevel software will also have a facility for estimating the residuals at both levels. 
The residuals at level 2 from the baseline controlled model may be taken as one form of 
‘adjusted school effects’. They or something similar are often taken as indicators of ‘school 
value added’ or ‘school effects’ since they reflect different progress in schools once initial 
ability of their intake has been accounted for. The estimates of residual are subject to all the 
usual uncertainty and imprecision due to sampling error in estimates and their standard errors 
can also be estimated from multilevel software. Thus one way of presenting residual results is 
a ‘caterpillar’ diagram as in Figure 5.   
 

 

                                                
3 In presenting the above results we have as is conventional indicated at what levels the regression coefficient 
estimates are significantly different from zero. There is probably little interpretative value in this beyond the 
information contained in the estimates and standard errors. The sample size is quite large so estimates are quite 
precisely estimated with relatively small standard errors. Thus the effect size estimates are the import of the 
results rather than whether they happened to indicate a true difference from zero. The only insignificant net 
effect is that of Shape and Space and that is because the estimated effect is so tiny as to be effectively zero.  
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School Residuals 

 

 
Figure 5: Confidence Bands for Adjusted School Effects by Rank Order 

 
This diagram orders by value the residuals from the baseline adjusted model of Table 1.  With 
their rank order on the horizontal scale, school residuals are plotted on the vertical scale 
surrounded by 95% confidence limits. The diagram also exhibits a well known feature similar 
to that in much progress research and usually present however much control is exercised; 
there is considerable overlap of intervals with around 50% of the intervals covering the 
overall mean of zero. Thus attempts to rank or separate schools in league tables, even when 
there has been proper adjustment, is subject to a high degree of uncertainty (Goldstein and 
Spiegelhalter (1996)). 
 
2.5 Extending Hierarchical Models 
In any application we would usually start as in the examples above and then introduce and 
examine the fixed effects of other potential explanatory characteristics. In this example, for 
instance, gender, nursery attendance, school meal eligibility, and certain ethnic and first 
language factors all proved important influences on level 1 variation. The effect of the 
baseline number test was also shown to be non linear necessitating a quadratic term involving 
the square of baseline number. One particular school level variable, the percentage of children 
in the school eligible for free meals (an aggregate measure of background of students) was an 
important context variable explaining some degree of level 2 variation. 
Figure 4 above also suggests that the slopes in models can also be allowed to vary over level 2 
units in assessing evidence for differential effects. Reverting to the basic model we could now 
also index the slope by j and write jj

u
111

+= !!  to replace a common slope 
1
! . We have now 

allowed another random effect so that the model becomes 

 
oijojijijijo
euxuxy ++++=

111
!! . 

We now have two random effects at the school level. We must usually also allow the two 
school effects to be correlated since it is not unusual in practice for this to arise. We now will 

Rank 
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have three parameters to estimate to characterise school residual effect variation: 22

1
,

uu
o

!!  

and a covariance
io
uu

! . This type of model is often called a random coefficients model. In the 
example, Fielding (1999) demonstrated that the effect of the English baseline test varied over 
schools and that it had a correlation with the average intercept effect of -0.55. Thus in schools 
which in general had higher average effects there was a shallower effect of the English 
baseline score. 
Another way in which the multilevel model can be elaborated is by relaxing the assumption 
that all types of children have the same degree of residual variation at level 1. We may 
therefore allow complex variation at level 1 by modelling a variance function by allowing the 
residual variance to depend on level 1 variables. Fielding (1999) in his analysis showed that 
level 1 variance was different for the two genders and also whether or not the child was 
eligible for free school meals. Different variability of outcomes amongst certain groups is 
often just as interesting as differences in average levels. 

We can also extend the hierarchy in models to many levels. We gave examples of three and 
four levels in Section 2.2. In principle we can have as many as we like in addition to all the 
complexity of the type just discussed at any of the levels. Notation sometimes gets 
complicated and often has to be adapted to suit particular situations. For three level models 
we need three subscripts rather than two for instance. A basic three level variance components 
model, for example is written as  

oijkojkokijkijk euvXy +++= !  

This relates to the i’th level 1 unit within the j’th level 2 unit within level 3 unit k. We note, 
for instance the use of 

ojk
u  to indicate the residual for a level two unit within a particular level 

3 unit. We use the generic matrix form (see Section 2.1) for the fixed part of the model since 
it is convenient shorthand for a model with many fixed explanatory variables.  
There is also rapidly developing methodology for response variables which are not 
continuous. They can be binary, counts, nominal and ordered categorisations and the like. For 
example, Fielding et al (2004), discuss multilevel models for A level grades which treat them 
as sets of ordered categories rather than assuming they are points on a continuous scale using 
arbitrary points scores. A model for drop out of A level courses using a binary indicator 
dependent variable (drop out or not) in a two level structure is considered by Fielding et al 
(1998). We will not discuss models for these types of response in detail. However, we outline 
a basic 2 level model for binary response in the context of university progression studied by 
Draper and Gittoes (2004). Given samples of students (i) enrolling for courses in universities 
(j) we may record whether they progressed to second year (yij=1) or dropped out (yij=0). A 
well known portrayal of the way such binary responses might vary is the Bernoulli 
distribution, which is a special case of the Binomial with a single trial. Characterising this 
distribution is the probability of progression, denoted by

ij
! . However, the probability will 

vary across students dependent on values of a set of explanatory variables and the university 
effect (and possibly in more complex models its characteristics). What we require then is a 
model for this dependency. For many good reasons, discussed extensively in many texts (e.g. 
Greene (2003)) a linear dependency model for the probability similar to linear regression is 
not usually appropriate. One which has found wide application and is founded on a strong 
theoretical and empirical base is the logit model. Rather than a linear model for the 
probability itself this uses a linear model for the logit; the logarithm of the odds of 
progression (log-odds). Odds are defined simply as the ratio of the probability of progression 



  19 

to the probability of its complement, no progression. With this in mind the basic model is then 
written.  
 

 
ij

ij e ij oj

ij

ij ij

log it( ) log (X u )
1

y ~ Binomial( ,1)

!
! "

!

!

# $
= = +% &

'% &( )  

 
The right hand side of the first equation is for the most part the same as that for a two level 
model for a continuous response. There are explanatory variables in Xij and Level 2 random 
variation is described by the continuous random effect term u0j. In terms of higher level 
effects the interpretation is similar to linear models, but with effects operating on the log-odds 
of progression. However, we note there is no continuously distributed Level 1 random 
residual in the expression. Variation at Level 1 follows the Binomial distribution. Implicitly 
the binomial variance of the progression response is a function of the probability and is ij! (1-

ij! ). Hence there is no separate variance parameter.  

Thus in summary, direct linear models as in the framework we previously discussed are 
inappropriate for non-continuous responses. Rather there are extensions to generalised linear 
models (GLM), (McCullagh and Nelder (1989))4 to encompass multilevel random effects. A 
generic name for an extension involving random effects is a generalised linear mixed model 
(GLMM). When the random effects are hierarchical they become what are referred to as 
generalised linear multilevel models. Although we concentrate for ease of exposition on 
multilevel structures for linear models, many of the examples of complex structures we will 
discuss in the last section of our review are applied for non–continuous responses. Models for 
these usually involve transforming the responses in some way as in the example above and 
then only after transformation relating to a linear predictor. It is in this linear predictor that 
multilevel structures manifest themselves through continuously distributed random effects. 
Thus the ideas of these random effects as have been introduced for linear models carry over 
quite straightforwardly for these models. However, the estimation methodology for them is 
somewhat more complicated than for linear models and we will only refer to it only briefly in 
the discussion of this issue in Section 6.   
  

                                                
4 The econometrics literature often  calls these  limited dependent variable models (Greene (2003)) 
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3 Cross-Classified Data Structures 

3.1 The Nature Of Cross-Classifications And Their Effects 
In the previous discussion we clarified the nature of explanatory statistical modelling, and 
discussed the difference between fixed and random effects on responses. We saw the parallels 
between the analysis of structures common in education and the social sciences and traditional 
frameworks in experimental design more common in the natural sciences. However we 
focussed essentially on extending standard multiple regression models to effects arising from 
levels in hierarchical structures. Thus, for example, in a three level structure where pupils 
were nested within schools which were in turn nested within Local Education Authorities we 
were concerned with separating out effects arising from influences at these three levels. The 
early development of multilevel modelling methodology and associated computer 
implementations, particularly in education, addressed such structures since they were quite 
common. However, as the work developed, it was discovered that there was often much more 
complexity in data structures. This led to a desire to extend the methodology to handle the 
analysis of effects in such structures. The separation of effects arising from what we may 
regard as random cross-classifications is one such extension. 
Goldstein (2003) gives an illuminating example. In a basic two level multilevel structure 
students may be classified hierarchically by their school. In many cases, however, such units 
may be grouped along more than one dimension and collected data may reflect this. Students 
may be nested in schools they attend and also in the neighbourhood where they live. We can 
represent this diagrammatically in Figure 6 for just four schools and three neighbourhoods 
and thirty three students with groups of between one and six students nested within the cells 
of the various school/neighbourhood combinations. The cross classification is at level 2 with 
students at level 1. In this sense it is still a two level model but the level 2 units are now 
combinations of particular schools and neighbourhood.  

 
 School 1 School 2 School 3 School 4 

Neighbourhood 1 X X X X X X X X 

Neighbourhood 2 X X X X X X X X X XX 

Neighbourhood 3 X X XX X X X X XXXXXX 

Figure 6: A Random Cross-Classification of Students by School and Neighbourhood at 
Level 2 

 
To further clarify this type of structure we can draw a ‘unit diagram’ as in Figure 7. Such 
diagrams, however, can become far too elaborate for some of the more complex structures we 
will shortly consider, and may become more confusing than illuminating. Later in this report 
we will, however, consider alternative pictorial representations, which are simpler in content. 
However, as will be seen these also require to be read alongside some algebraic detail. We 
eschew this for the moment until we have further developed the reasoning behind such detail.  
For the reasons just discussed and so the picture does not become too cluttered Figure 7 is 
only schematic and does not represent all the students in Figure 6. Only twelve of the thirty 
three students are considered. For instance, Pupils 1 and 2 attend the same School 1 but come 
from different areas, whilst Pupils 6 and 10 come from the same area but attend different 
schools 
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School       S1                   S2                  S3                    S4 
 
 

 
 

 
 

 
 

Area                        A1                  A2                      A3 
 

Figure 7:  Twelve Students at Level 1 Nested Within an Area and School Cross- 
Classification at Level 2 

 
Extending methodology for such structures means recognition that level 2 effects are now 
more complex and may arise from two cross cutting hierarchies. Further we desire to separate 
out in some way the effects of both schools and areas on whatever student outcome we are 
studying. This is particularly important if there is a degree of association between the areas 
the student lives in and the school they attend. This will usually be the case in observational 
and routine data. If area effects are important and they are left unspecified in a model the 
school effect may ‘draw to itself’ some effects attributable to its associated areas. This stands 
in contrast to the balanced designs we often see in experimental studies where such 
association is ‘designed out’. In many ways the data collected by Pupil Level Annual School 
Census (PLASC) has this structure which although focussing on data collected from schools 
also enables classification of students by whatever area unit seems appropriate through 
information on their postcode.  A relevant full example for the 2545 students at Key Stage 3 
(KS3) in 2003 attending the 15 schools in the one Local Education Authority of Oldham is 
given in Figure A of the Appendix. This detailed table if it were inspected carefully would 
several interesting and important features which are typical of such educational structures. 
The 15 schools vary in size and have between 88 and 236 KS3 students. Of the 67 electoral 
wards of residence of these students only 20 are within the boundary of Oldham LEA. The 
other 47 wards, which are not all geographically quite proximate to Oldham, cover the areas 
of residence of a sizeable number 304 (12%) of the children in Oldham schools. We call this 
the ‘out of area’ factor. Apart from one or two wards quite close to Oldham the number of 
children in Oldham schools from each of them is relatively small.  
These particular features present something of a challenge in applying multilevel models, 
which though not insurmountable may make for some daunting computation. Firstly if we 
were analysing the Oldham data alone we would need a fairly large number of area effects in 
the model apart from Oldham wards and this has computational consequences. Secondly due 

 

    Pupils      P1    P2   P3    P4    P5   P6   P7    P8      P9  P10 P11  P12 
Pupils           P1    P2   P3    P4    P5   P6   P7    P8      P9  P10 P11  P12 
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to small numbers in most of these areas there are consequences, which will not be detailed 
here on the precision of model estimates. Thirdly, the Oldham data exemplified may be part 
of a larger set of many more LEAs, possibly all of them. The schools, as one factor in the 
cross-classification, are nested within LEAs. Taken alone so are electoral wards. However, 
due to the ‘out of area’ factor the cross-classified level 2 units will no longer be arranged 
hierarchically beneath LEA. Thus attempting to separate out an LEA effect by specifying it as 
Level 3 in a strictly hierarchical model will no longer be possible. The structure thus becomes 
a little more complicated. There are other features we might note about the Oldham data and a 
broader set of all LEAs of which it might be drawn. Each of the schools has a concentration 
of its students in fairly few wards, which presumably are its main catchment areas. This 
means there are a large number of cells in the cross-classification, even those which 
correspond to Oldham wards, which are empty or at most have just a few students. This 
sparse structure is typical of situations which Raudenbush (1993) has described as radically 
unbalanced. Later we will return to such further issues complexity in cross-classified 
structures and their resolution.  

The use of cross-classified structures, and the ‘building’ into a statistical model the effects of 
its separate factors, is one of the essences of good research strategy. If we did not recognise 
that there are some area effects in addition to school effects on the student outcomes we 
would be dealing with what is often called a ‘underspecified model’. The theory of statistical 
modelling suggests that estimation of other effects might be poor. This is true both for effects 
of explanatory variables we are examining and also the random effects of factors in our 
structure. Looked at another way we might say there is inadequate control in the model for 
important and possibly confounding effects. If we noted that a particular school had poor 
outcomes this may be due in part to the fact that this school drew large numbers of students 
from areas having characteristics which were detrimental to student outcomes. Conversely if 
we had a model which examined just area differences and did not include school effects, some 
areas may have higher achievement amongst its students than what might be expected. 
However, this may partly be due to ‘school’ effects of schools which these students largely 
attend. What we might like to study is the effects of particular schools net of any area effects 
and vice versa. It is cross-classified structures such as in the examples together with adequate 
data to support their analysis that enables us to do this. The example structures typify what 
might be required as essential initial conditions necessary to separate out these effects. A 
given area will often have its students going to a number of different schools and a given 
school will usually draw its students from a variety of areas with different characteristics. In 
Oldham LEA, for example, School F does have a concentration of 58% of its students in three 
wards but it draws the rest thinly spread from as many as 27 of them. Similarly a particular 
ward which has code 00FPBA has residing students who go to seven different schools. We 
can then study area effect variation controlling for school and school variation controlling for 
area. Fortunately an extreme situation, which would not facilitate this mutual control, only 
rarely arises in practice. Suppose each school drew all its students from one particular area 
unit and all students in an area went to one particular school.  In a cross classification table 
like the example data there would be only one non empty cell per row and per column. The 
units formed by the cross-classification could still be level 2 units and variation in the effects 
of these units could be studied. However, we could not attribute the effects to either schools 
or areas. These effects are said to be completely confounded. Sometimes, certain structures, 
although not as extreme, approach this situation and then care must then be exercised in the 
attribution of effects. 

In a parallel study to this review we are also considering the extension of education 
production functions to consider not only achievement of individual students being partly 
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dependent on the school they attend and the resources attracted by that school but also some 
‘personal resources’ reflected partly in some way by the areas in which the students live. It 
should be clear from our discussion of the inter-relationships of effects that such effects if 
they are important might be included in a more elaborately specified model. Without isolating 
and controlling for such effects for which the cross-classified structural models are 
appropriate, we might not be able to disentangle such effects from others of particular interest, 
say the school effect of pupil teacher ratio or spending per pupil. Indeed such investigation if 
they yield important net area effects might suggest ways in which financial resources might 
be devoted to say ameliorating features of areas which have been observed to have 
detrimental effects. Such model results on observational data should not be over interpreted to 
yield firm causal explanations. However, they might suggest ways in which interventions 
might be designed which can then be trialled in a designed framework to yield more firmly 
based interpretations. Unfortunately the evidence base for area targeted interventions on 
children’s achievement in Britain is currently sparse (Gibbons (2002)).  The evidence of 
Gibbons (2002) on neighbourhood effects suggests that they can be relevant. However, as the 
wide range of research on school effects also suggests individual and hence family 
characteristics appear paramount.  There is clearly, though much potential for more detailed 
research on such area effects and complex multilevel random effects models seem an 
appropriate tool to use.  

3.2 Some Objectives Of Analysing Cross-Classified Multilevel Models  
In the study of such cross-classified data structures there might be a variety of aims in 
building a multilevel statistical model which incorporates random effects for both factors in 
the level 2 structure. We conduct the discussion in the context of an area by school 
classification though, of course, these aims are more generally applicable for even more 
complex structures. 

3.2.1 Improving the quality of estimates of explanatory variable effects. 
Firstly we might seek to improve the estimation of effects of explanatory variables in the 
model by ensuring the random disturbance structure is properly specified and incorporates in 
a careful way essential features of important random effects. The impact of not so doing is 
perhaps most highly developed in the econometrics literature (see for example Greene (2003)) 
and is the subject of highly developed statistical theory. However, a main impact is that the 
fixed effect of coefficients in the model, though estimated with statistical consistency, usually 
report understated estimates of their precision through standard errors. The latter, play a role 
in statistical testing and often can lead to the conclusion that explanatory variable effects are 
statistically significant, when in a correctly specified model they would not be. This is true of 
ignoring multilevel effects in general, as we saw in the introduction. In our examples 
recognising school effects in a two level model might go someway to resolving this difficulty. 
However, if clustering of children into areas was additionally important due to real area 
effects then recognising this may improve further the quality of such inferences. The recent 
report by Levačić et al (2005) on effects of resources on individual student progress at KS3 
properly recognised this grouping of students into schools5. However, if area effects are also 

                                                
5 In many econometric applications interest usually focuses mainly on the improved estimation of the fixed 
effect explanatory variable coefficients in a model. Sometimes then   multilevel or crossed random effects are 
treated as nuisance factors. The fixed effect coefficients themselves are often estimated consistently though not 
entirely efficiently by standard methods which ignore the higher level random effects. However, since the 
standard methods produce inappropriate standard errors they are adjusted for the multilevel clustering by use of a 
variety of robust methods of standard error estimation (‘sandwich ‘ estimators). This approach was used for the 
most part in adjusting for school effects in Levačić et al (2005), though some full scale multilevel models were 
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important there is the possibility that inferences may be further improved by recognising this 
additional random effect through the further classification of students. 
3.2.2 Identifying components of variance in the outcomes. 
In a cross-classified model we might initially and before introducing explanatory variables 
seek to examine how variation in outcomes might be attributable to differences between say 
schools, between areas and between individual students after controlling for area and school 
effects. This will give a base for then extending the model to identify which area, school and 
student characteristics might explain some part of these components of variance. After 
introducing such variables we might then estimate the residual components of variance. These 
will then give us an idea of the extent to which variation in outcomes might be attributable to 
unobserved influences operating at the level of each of the three types of unit in the model6.   

3.2.3 The study of differential effect. 
We might want to investigate whether associations between student characteristics vary over 
schools and over areas. For instance is the effect of initial ability at entrance to a secondary 
school more important in some schools than in others? We might also want to see if effects of 
school characteristics vary across areas or if area characteristics operate differently for 
different schools. The effect of students going to a selective school, for example, might be 
greater for students from some areas than others. These types of influence are often known as 
differential effects7. 

3.2.4 Estimating level 2 effects  
Most multilevel and other random effects model structures allow estimate of unique effects 
(‘random effects’) associated with particular schools or areas after we have adjusted for 
appropriate explanatory characteristics8. This is the approach adopted in much school 
effectiveness literature on ‘value added’ using hierarchical models (for example O’Donoghue 
et al (1997)). It may also be used as a screening device to identify schools with extreme 
adjusted outcomes for further investigation (Goldstein and Spiegelhalter (1996)). In a cross-
classified model there is a further advantage in that there has been additional control for area 
effects which might otherwise have forced certain schools with strong areal associations to the 
extremes. 

 

                                                                                                                                                   
also trialled. Since econometric interest is usually on the coefficients this may be satisfactory. However, often 
more  useful insight is often gained by explicitly modelling the  higher level effects 
6 If area effect was important and had not been included in an under-specified 2 level model with just school as a 
random effect the component of variance due to schools might be unreliably attributed to school effects since 
part of it may be due to areal differences in the school intake. Rasbash and Browne (2001) give an example in 
health research, where we might desire to assess the relative importance of general practices and hospitals on 
patient outcomes. Due to the crossed nature of the two units building separate models one for patients within 
hospitals and patients within general practice is insufficient and may be misleading. What is required is an 
assessment of hospital variation net of GP effects and vice versa. This can only be done by estimating the 
components of variance in a  cross-classified model. 

 
7 Technically these are handled in models by allowing random coefficients for the explanatory characteristics 

 
8 This is another good reason for adopting a fully specified model with explicit random effects. Treating them as 
‘nuisances’ and adjusting for cluster effects on standard errors in a standard regression framework will not allow 
for this elaboration. 
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4 Further Examples of Cross-Classified Structures And Their Analysis 

4.1 Some Examples In Education And Repeated Measures Studies 
Other slightly more complicated examples occur in repeated measures studies. In such studies 
as tracing progress in say reading attainment the measures at different occasions over time can 
be regarded as nested within particular pupils. Changes over occasions are an obvious focus 
of enquiry. However, in an extended multilevel framework we may also want to examine and 
control for the effects of say teachers, different classes, schools, or raters9. Matters can get 
complicated because for particular pupils any of these either singly or in combination may 
change over time and sometimes several times. However, repeated measures designs are 
instructive in illustrating the richness of structures that can be formulated using the idea of 
cross-classified effects. We might note right at the outset that in multilevel analysis of these 
effects it is not necessary to have complete and balanced data on all occasions or sets of 
measurements. This is one advantage of a multilevel approach to repeated measures studies 
and is discussed extensively in Goldstein (2003).  
We now give typical examples to demonstrate the structural ideas. Suppose a basic design has 
measurements at up to 7 different occasions with 2 measurements by the same 2 raters on all 
occasions. However, for various reasons measurements are not always complete and 
sometimes only one rater’s measurement is taken. For a particular student the situation may 
be as shown in Figure 8 where X indicates the measurements that are taken.   

Occasion 

Rater  1 2 3 4 5 6 7 

A X X   X X X 

B X  X X X X  

Figure 8: A Cross-classification of Raters and Occasions for One Student  
Below the student the structure can be conceptualised as a cross classification of a pair of 
raters with occasions. The various cells evident are units at level 2 with measurements at 
Level 1 nested within the rater-occasion combinations. It may be noted that it is also a special 
case of a level 2 cross classification with at most only one unit per cell. This situation can be 
handled by multilevel analysis although there may be some implications which we later 
examine.  
Of course measurements will be taken on many students. Suppose for the moment that each 
student has its own set of raters not shared with other students so that, for instance, rater A 
and B are unique to one student. With this scenario the cell units that have measurements are 
hierarchically arranged within students at level 3.  This situation is represented more fully by 
the diagram in Figure 9 for three particular students. We can note that with the unique 
allocation of pairs of raters to student and with students at level 3, each student has separable 
blocks of rater and occasion crossings (shaded in the diagram). This feature can have 
advantages in easing the estimation of corresponding models (Rasbash et al 2004). We might 
also note a further lack of balance in that it possible for some students to have no 
measurements at all on some occasions. Student 3 in the illustration has measurements only 

                                                
9 Here the term rater is used as in the educational testing literature as a generic term for such words as  assessor,  
examiner, judge, grader  or marker. 
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on three of the seven occasions. These types of structures can be handled quite effectively 
with modern methodology.  
 

 Student 1 Student 2 Student 3 

Occasion 1 2 3 4 5 6 7 1 2 3 4 5 6 1 4 7 

Rater A X X   X X X          

Rater B X  X X X X           

Rater C        X X X X X     

Rater D        X X X X X X    

Rater E              X X X 

Rater F                X 

Figure 9: Measurements in a Cross Classification at Level 2 with only One Unit Per Cell 
Within Students at Level 3  

 
Suppose now and perhaps more commonly we have the same set of raters involved with all 
the children in the study so that it is possible for each rater to assess more than one child. 
Separable blocks as in the Figure 9 structure will no longer be evident. For simplicity of 
exposition we now assume just one measurement per occasion rather than two, so that 
measurements and occasions have the same logical status in the structure. We also now 
consider taking measurements at up to five occasions only. An extract from the design 
structure which shows three of the students with which three of the raters A, B and C are 
involved is shown in Figure 10. The level 1 units are as before measurements but since there 
is only one measurement per occasion they are also conceived of as measurement occasions. 
In this structure the raters are crossed with students at level 2 within which the measurement 
occasions are nested. Formally the structure of Figure 10 is a special case of the structure of 
Figure 6 and could be represented by a ‘unit diagram’ similar to Figure 7 but there are now 
many empty cells and at most one observation per cell.  
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 STUDENT 
1 

STUDENT 
2 

STUDENT 
3 

Occasion 1 2 3 4 1 2 1 2 3 4 5 

Rater A X X X  X      X 

Rater B    X   X X    

Rater C      X   X X  

Figure 10: A Cross –Classification of Raters with Student at Level 2 with Occasion       
Observations at Level 1 

 

An extension is possible if for example there were a number of measurements per occasion 
and each was undertaken by the same rater.  In this situation each X in the diagram would 
now represent several measurements (level 1) within a level 2 of occasions. The crossing of 
student and raters would now move up to be level 3.  

Similar ideas of cross classification structures also occur commonly when a simple 
hierarchical structure breaks down. Consider, for example, a basic repeated measures design 
which follows a sample of students who are observed over time, say over three school terms, 
within a set of classes for a single school. A three level strict hierarchical structure would 
ensue; occasions nested within students who are in turn nested within class. Suppose, 
however, and this is not entirely unrealistic, that students change classes during the course of 
the study. Students can no longer be regarded as nested within particular classes. For three 
students, three classes and up to three occasions we might have the pattern of Figure 11. 
Formally this is the same structural type as in Figure 10. We now have a two level structure 
but with cross-classification of classes by students at level 2 and level 1 observational 
occasions with single measurements nested within them.   

 

 STUDENT 1 STUDENT 2 STUDENT 3 

YEAR 1 2 3 1 2 1 2 3 

Class A X X  X    X 

Class B   X      

Class C     X X X  

Figure 11: Students Changing Classes 
 

Outside the field of repeated measures Fielding (2002, 2005) has examples of the same formal 
structure as Figures 10 and 11. The level 1 unit there are GCE Advanced Level entries from 
students in a number of post-16 colleges and school sixth forms.  Each student enters for a 
number of a A-level subjects each of which is taught in separate teaching groups. Students are 
thus crossed with teaching groups. A level entries are nested within students but are also 
nested within teaching groups. To incorporate both in a combined structure we have level 1 
entries within a level 2 crossing of student and subject teaching group (class). Institutions are 
a level 3 above this in which the student and teaching group combinations are nested. This 
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structure facilitates the separation of teaching group effects from those of the students selected 
into them. An earlier analysis which had entries hierarchically arranged within teaching 
groups was shown to distort teaching group comparisons since it failed to recognise that such 
entries were not independent across groups, since groups had students in common. Put 
another way the student effect was not adequately controlled. 

Let us consider now a bit more complexity to add to that of Figure 11 and include schools as 
another higher level. If students stayed at the same school these will be classified as level 3 
units beneath which the student and class crossing is nested. However, students may also 
change schools during the course of an observational study. Students must then be crossed 
with schools at the top level 3. Classes are nested beneath at level 2 with occasions as the 
level 1 unit. The students have moved from being crossed with classes to being crossed with 
schools. Note that since students are crossed at level 3 with schools they are also 
automatically crossed with any units nested within schools so that we do not need separately 
to specify the crossing of classes with students to accommodate changes of classes within the 
same school. This important feature receives detailed stress in Goldstein (2003).   

We now consider an example which in some senses extends the ideas of Figure 11 but now 
with predictable regular changes of class by the students. The situation is one where class 
groupings of students are re-formed for each period. We might now wish to think of teacher 
effects rather than class group effects since we assume each class is taught by the same 
teacher throughout a period and where we might suppose each new class group at each period 
has different teachers10. Such a structure with four different teachers over just two periods for 
three students is given in Figure 12. We keep to the situation of one school for relative 
simplicity of illustration, though with more elaboration it could form part of a larger structure 
in which schools are included at a higher level and also complexities of changing schools 
considered. We now have a cross classification of teachers by students at level 2 with one 
measurement on occasions as the level 1 unit. We note again a structure where most of the 
cells are empty and that there is at most one level 1 unit per cell. Raudenbush (1993) gives a 
research example of just such a structural design separating out the classroom teacher effects 
from those of student characteristics in a study of growth in mathematics achievements. 
Raudenbush and Bryk (2002) also elaborate this example further to illustrate the flexibility of 
design in such studies. They wish to study the cumulative effect on the growth of 
combinations of teachers as students’ progress. They show how this can effectively be done 
by introducing a further cross classification of the set of teachers on one occasion with 
themselves on other occasions.  
 

                                                
10 We note that class units in many structures are taught by the same teacher and this teacher has only one class. 
In this situation the set of classes and teachers are the same.  If this was the situation in Figure 11 then we might 
call the units class/teacher. The disentangling of class and teachers effects is not possible in this situation but has 
been a pre-occupation in research. We give an example of a design in which this could be tackled later in the 
report. Although in Figure 12 classes and teachers are again in one to one relation we label the units teachers 
since whole class groupings move from teacher to teacher and it becomes possible to envisage this as the effect 
of changing teachers. 
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  STUDENT 1 STUDENT 2 STUDENT 3 

  Period       

TEACHER A 1 X  X    

TEACHER B 1     X  

TEACHER C 2  X    X 

TEACHER D 2     X   

Figure 12: Students Changing Teachers / Groups for Each Period 
 

We have presented just a few examples in the context of repeated measures to illustrate some 
elements of complexity. We have focussed on these designs since they are very apt in 
exemplifying the complexity of structures which can arise in may research contexts. Similar 
designs will occur also frequently in panel or longitudinal surveys of individuals who move 
from one locality to another, or workers who change their place of employment. Although 
there is complexity enough in the examples they do not entirely reach the end of the story. 
Some further detailed accounts of even more complicated designs are offered by Goldstein 
(2003) and Raudenbush and Bryk (2002). However, by applying similar ideas as we have 
discussed a variety of scenarios with many elaborate features that can with some imaginative 
creativity be cast into meaningful structures using hierarchies and cross-classifications.  

 
4.2 Some Notation For Cross-Classified Models  
In the early sections we introduced some basic notation for models of hierarchical structures. 
In a basic two level model we denoted a level two random intercept effect for level 2 unit j by  

j
u
0

and its variance by 2

0
u

! . Level 2 effects are now more complex and we require extending 
the notation. Firstly we need to consider the cell combinations of the two factors. If we use j1 
to indicate a particular unit of the first classification and similarly j2 for the second factor, we 
identify particular level 2 units which are now combinations of two units on each factor by  

(j1, j2).  In basic models the level 2 effect is the sum of two separate random effects which we 
now denote as {

1 2

(1) (2)

0 j 0 ju u+ }. Using a similar formulation as before but using the cell notation 
the model for level unit i within the level 2 unit (j1, j2) can now be written as   

1 2 1 2 1 2 1 2

(1) (2)

i( j , j ) i( j , j ) 0 j 0 j 0i( j , j )y X u u e!= + + + . 

We note that this model is still valid even if there is no more than one observation in a cell.  
We still refer to basic level 1 variance by 2

0
e

!  but the level two variance is now )( 22
)2(

0
)1(

0 uu
!! + , 

the sum of two additive components one from each factor in the cross-classification. If we 
have models with random coefficients for either or both classifications of the crossing or more 
elaborate complex level 1 variance functions then analogous model structures and notation 
can be extended. Further ways of classification and more levels in the hierarchy, with possibly 
cross classifications at higher levels also extend it further. However, the more complex the 
model the more elaborate are the notational conventions. Rasbash and Browne (2001) give the 
complex rules and some detailed examples. Later we will introduce a more general notation 
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which can be used in conjunction with a particular newer form of estimation known as 
MCMC. 
Although we will not consider this in any detail it is also possible if an application warrants it 
to characterise variation due to cross-classified levels by the incorporation of an ‘interaction 
term’ in ways which will be familiar to those versed in two-way analysis of variance 
procedures. In our examples above we might for instance suppose that the marginal effect of  
residence in a particular area might differ according to which school the student went to or 
vice versa. In other words there is something about particular combinations of areas and 
schools which might make the additive contribution of an area effect and school effect for a 
particular cell unduly simplistic. If this is the situation the cell effect is now characterised as 
the sum of three additive components  

{
1 2 1 2

(1) (2) (3)

0 j 0 j 0( j j )u u u+ + }.  

The usual meaning of interacting effects follows. For example, the effect of belonging to j2 no 
longer makes a straight added contribution to that of j1 whatever the unit j1 the student is in, as 
it would if 

2

(2)

0 ju were just added to
1

(1)

0 ju . Instead the added contribution to 
1

(1)

0 ju  for unit j2 is now 

{
2 1 2

(2) (3)

0 j 0( j j )u u+ } which depends on the unit j1. The corresponding cross-classified level variance 

is the sum of three components is )( 222
)3(

0
)2(

0
)1(

0 uuu
!!! ++  where 2

)3(
0u

!  the variance of the 

interaction effect is known as the ‘interaction’ variance. It should be said that although 
interaction terms allow for greater flexibility and specificity not many applications arise in the 
literature, possibly because the additive characterisation has proved adequate for most 
purposes.  

4.3 An Example Analysis: Sixteen Year Examination Performance 

Goldstein and Sammons (1993) examine data on GCSE results on students of the Junior 
School Project (Mortimore et al (1988)) in order to develop further insight into the continuity 
of school effects. In particular, it was desired to see what carry over effects the primary school 
attended might have on their progress at secondary school. It uses a cohort of 758 students in 
48 junior schools that went on to 116 different secondary schools. The essential feature is that 
level 2 was a cross-classification of the different combinations of junior school and secondary 
school that the students (Level 1) attended.  

For illustrative purposes Table 2 only presents results for a selection of four different model 
fits the researchers discuss.11

                                                
11 This table draws directly on the Goldstein and Sammons (1997) source and in keeping with the preference of 
some researchers does not incorporate a starred convention to indicate significance of results as is common in 
some areas particularly in econometric regression results. We have not felt at liberty to embellish the table in this 
way nor would we really wish to do so.  In Footnote 3 we have commented on this practice of starring results 
and explaining why it is often not as informative as it might be given that inferential content is fully covered by 
the estimate values and their estimated standard errors. In the context of the models in which they are presented 
all fixed effect estimates, apart from the 8  year  scores are more than 3 times their their standard errors. As such 
if it were desired to refer them to the appropriate test null distribution they would all be significantly different 
from zero beyond the 1% level.  
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 Model A  Model B Model C Model  D: No 
Junior random 
effect 

Fixed effects 
Intercept    0.25  0.50  0.15 0.50 

Male -0.34  (0.07) -0.19  (0.06) -0.22  (0.06) -0. 22  (0.06) 

Free school meal  -0.37 (0.08) -0.23 (0.06) -0.22  (0.06) -0.22 (0.06) 

VR2 Band  -0.38  (0.08) -0.36  (0.09) -0.37  (0.09) 
VR3 Band  -0.71 (0.13) -0.66  (0.14) -0.65 (0.13) 

LRT Score   0.32  (0.04)  0.29  (0.05) 0.32 (0.04) 

8-year English score   0.00016  (0.0020)  
8-year Maths score    0.0058   (0.0056)  

Random (variances) 
Junior Schools 0.054  (0.024) 0.036 (0.013)  0.025  (0.014)  

Secondary Schools 0.019  (0.054 0.014 (0.014) 0.016   (0.014) 0.028  (0.015) 
Level 1 (student): 

Males 

Females 

LRT 

Covariance of LRT 
and intercept 

 

0.940  (0.05) 

0.740   (0.05) 

 

0.682  (0.04) 

0.554  (0.06) 

 

 

0.686   (0.04) 

0.500  (0.04) 

0.031  (0.021) 

0.093  (0.018) 

 

0.680  (0.04) 

0.520  (0.04) 

0.030  (0.02) 

0.10  (0.02) 

Table 2: Analysis of 16 Year Examination Results (GCSE score) with Cross-Classified 
Random Effects for Secondary School and Junior School (Estimated Standard Error of 

Effect Estimates in Parentheses). Source: Goldstein and Sammons (1997) 

Note: The outcome GCSE score and the London Reading Test score have been empirically transformed to 
approximate standard normal distributions. Free school meal (FSM) is binary (yes/no) for each pupil as is the 
Male dummy for gender. Scores on a verbal reasoning test at the end of primary school are banded into three 
groups VR1 (highest), VR2, VR3. In the model there are dummy indicators for VR2 and VR3 with VR1 as the 
reference category. 

 Model A is a very basic model including only gender and eligibility for free school meals 
(FSM) as explanatory variables.  It will be noted that as a refinement to a usual basic model 
different variances are allowed for males and females12. The level two random effect is 
characterised as the sum of a primary school effect and a secondary school effect. We see that 
the estimated variance between effects of Junior Schools is higher than that of Secondary 
Schools by a factor of around three. One reason for this may be that secondary schools are on 
average far larger than primary schools so that the sampling variance is smaller. Such an 
effect will often be observed where one classification has far fewer units than another, for 
example where a small number of schools are crossed with a large number of smallish areas 

                                                
12 Allowing level 1 variance to be complex in this way often adds useful and interesting insights.  Here we note 
that residual variation due to unobserved characteristics amongst boys is higher than that amongst girls. This has 
been regarded as of interest in its own right. The dependence of variance on individual characteristics is often 
known in the statistical literature as heteroscedasticity. 
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of residence. In such circumstances we need to be careful about the interpretation of the 
relative sizes of these variances. However, this caveat apart, we can see that primary schools 
attended can exert some noticeable effect on later educational achievement in addition to that 
of the secondary schools themselves. To further study the issue of size of unit we could make 
the two between school variances a function of their sizes in a similar way as we have allowed 
level 1 variance to depend on gender.  

In Model B further explanatory variables, LRT score and verbal reasoning group indicators 
are added. These reflect measured achievement at the end of primary schooling and may be 
regarded as input controls on the later secondary school outcomes. As expected these 
variables explain relatively more of the Junior School variance. From one point of view if our 
aim was to judge the relative effects of Secondary and Primary School on secondary school 
performance we should not adjust for the variables added to model B since they may be 
regarded as primary school outcomes and hence are primary school observed effects. They 
will obviously absorb a large amount of variance attributable to primary schools which were 
previously unaccounted for.  Thus from this point of view such comparisons might be made 
based on models similar to A.  From another point of view Model B might be more useful if 
the interest was in ‘value added’ by secondary schools after adjusting for intake performance 
and other unobserved effects of Junior School attended (as captured by the residual Junior 
School random effect). Value added issues aside, however, using Model B to directly 
compare the effects of Secondary and Junior on the secondary outcome might be 
inappropriate; the Junior School variance has been explicitly deflated by control for the Junior 
School attainment outcomes. These outcomes may be considered to be part of the Junior 
School effects on secondary progress but are not reflected in the Junior School variance in 
Model B which only summarises the influence of other unobserved Junior School factors.  
This example is elaborated in Goldstein and Sammons (1997) where further refinements and 
complexities are considered. The possibility of a differential effect of LRT between secondary 
schools in particular is considered by making the coefficient of LRT random across schools in 
ways outlined in Section 2.5. This proved uninformative in an extended model specification 
where additionally the level 1 variance which was allowed to depend on LRT score.13 The 
latter idea is incorporated into Model C of Table 2 which also adds as potential explanatory 
variables Maths and English scores obtained at entry to Junior school at aged 8. The latter 
effects are small and insignificant once the Junior School outcomes are controlled.  A Model 
C type formulation is concluded by Goldstein and Sammons (1997) to be most appropriate for 
value added measurement for Secondary schools since it effectively controls for influences 
prior to entry to secondary schools. However, in this situation the eight year scores might be 
dropped without appreciable effect. 

                                                
13 It may be noted that in Model C and Model D where a variance term is added for LRT at Level 1, an 
additional covariance term is added for possible correlation between the intercept disturbance and that due to 
different LRT scores. The complex variance at Level 1   then allows heteroscedasticity as a quadratic function of 
LRT which is often observed empirically. Thus  using standard statistical formulae for linear combinations of 
random variables we have, for example for boys in  Model C the variance function : 

Variance of intercept +2LRT *( covariance of intercept and LRT random effects)+ LRT2 * Variance of LRT 
effect= 0.686 + 0.186LRT +0.031LRT2. Similarly the variance for girls has the same linear and quadratic 
coefficients but is shifted downwards to 0.500 + 0.186LRT +0.031LRT2, reflecting the smaller variance on 
average for girls. 
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We note as reported by Goldstein (2003) that these results, though slightly more elaborate, are 
broadly in line with similar results for Scottish data from schools in Fife (Paterson (1991)).  
Here, firstly an analysis removing the Junior School cross classification is also reported. This 
is a two level analysis with secondary schools only at level 2 and with a prior verbal 
reasoning score at entry as pupil level control. Secondly this is contrasted with a cross-
classified analysis similar in type to Model A in Table 2 without the prior verbal reasoning 
control. The between secondary school variance is smaller but by not much in the first case 
than it is in the second. Thus the impact on secondary school effect variation of individual 
level initial ability control is similar to control exercised through primary school overall 
effects. However, a third analysis adds prior verbal reasoning at the individual level to the 
cross-classified model and here the secondary school effect variance becomes quite small. On 
this evidence some tentative conclusions were made about standard analyses such as the first 
one, which is typical of many school effectiveness studies which control for initial 
achievement. These analyses are often used to highlight apparent differences in progress 
effects between secondary schools. However, from the second type of analysis similar to 
Model B in Table 2 we might note that many of these differences may be due to many aspects 
of the primary school experience of the pupils, which were formerly left uncontrolled. A 
natural question arises as to what adjustments should be made in typical ‘value added studies’ 
before they can be concluded to truly reflect the contribution of the secondary school to 
progress. The examples discussed illustrate that adjusting for achievement at a single previous 
time period and usually at entry may not be entirely adequate. Possibly other aspects of the 
child’s former experience including the primary school attended should be controlled. 
However, Snijders and Bosker (1999) report on a similarly structured example for a Belgian 
data set of Opodenaaker and van Damme (1997) using mathematics test score taken at the end 
of second grade of secondary schools. Here the effect of primary schools on secondary 
mathematics is not so marked.   
To further elaborate the present example in a similar way, Model D in Table 2 retains the 
main specifications of Model C, except 8-year score effects, but excludes the Junior School 
classification. Adding 8 year scores to Model D as in Model C has little effect on this 
analysis. Model D is thus a ‘standard’ secondary school effectiveness model. It may be seen 
that ignoring heterogeneous effects between Junior Schools inflates the Secondary School 
effect. Since Secondary School variance in Model D is 75% higher than that of Model C, 
stronger differences between secondary schools in progress may be asserted than are really 
warranted. Secondary school residual estimates from models are usually taken as indicators of 
effectiveness. Thus the two models would not normally rank these school effects in the same 
order either unless primary school intake across secondary schools is homogeneous, which is 
unlikely. 

 

5 More Complex Structures: Multiple Membership 
5.1 The Idea of Multiple Membership 
Multiple memberships are another type of complex structure where we may desire to 
disentangle effects and is closely related to cross-classified effect modelling. It arises in 
situations where lower level units in a hierarchy can be members of more than one higher 
level unit simultaneously.  In an education system, for example, students can attend more than 
one institution. Suppose we are studying progress in secondary school from age 11 to Key 
Stage 3. It might evident that the whole of the educational experience from age 11 has 
relevant effects. For a student who was in the same school for the whole of that time the 
school effect might be unequivocal. However, a student who changed schools might have 
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been exposed to the ‘effects’ of more than one school. If in addition the level 2 in the 
hierarchy was a cross classification of area of residence and school the student might also 
have changed areas of residence and exposed to more than one area effect. There is evidence 
in the educational research literature that such movers have different progress profiles (Yang 
et al (1999)). Ignoring such multiple membership characteristics of certain students, for 
example by allocating them only to the units they belonged to at the response occasion, might 
distort analyses.   

We might note that we are still concerned with disentangling and controlling for the higher 
level effects of particular schools (and possibly areas) in the hierarchy. However, the question 
arises as to how we might model these effects for observations where more than one of these 
school effects might be making contributions. A basic necessity is to assume a priori that for 
each higher level unit to which a lower level unit belongs there is a known weight (usually 
summing to unity for each lower level unit) to apply to the school effects. This may represent, 
for example the proportion of time spent in each school by the student. The choice of weights 
is to some extent subjective but can be important. For instance it might be thought that more 
recent school experience has a greater impact and might counteract to some extent the time 
experience. On the basis school of length of time at schools the proportion of time in the 
current school out of five years might be 0.2 representing the fact that the student spent only 
one year in his current school in the run up to KS3. Another secondary school which the 
student attended from age 11 to his transfer might have on this basis a weight of 0.8. 
Subjectively though it might be thought preferable to attach alternative weights of 0.4 and 0.6 
to account for possible greater impact of more recent experience. In practice a sensitivity 
analysis might be carried out to determine how alternative choices of weights affect model 
results and inferences, if at all. Fielding (2002), for instance considered teacher effects on 
GCE Advanced level performance.  The teaching groups in the sample data extend over two 
years of a course and it is the norm for more than one teacher (often two or three) to handle it. 
The weighting scheme adopted on the basis of timetable information was to weight each 
teacher involved in a group by the proportion of the course they taught. However, 
experimentation with different weighting schemes were carried out in exploratory work; in 
particular giving greater weight to teachers in the second part of the course. It turned out that 
the main results were relatively robust to choices of scheme except for extreme ones such as 
ignoring the multiple membership of responses to teachers and allocating them only to the 
most recent teacher. This strict hierarchical model is equivalent to giving the most recent 
teacher a weight of unity and the rest zero.  
A similar situation which might be conceived as a multiple membership structure is found in 
data in which there is some uncertainty about which higher level units some or all lower level 
units belong to. Occasionally there may be ancillary information which narrows this 
uncertainty down a little. In a student survey, for example, information about smaller 
neighbourhoods of residence such as census output areas may not be available. We might, 
however have other information such as the ward they live in which may make it possible to 
assign weights to the output areas within that ward according to probabilities of belonging to 
each conditional on this information. In the absence of further information equal probabilities 
for those areas might seem sensible. As a further example in model cross-classifying schools 
by areas we might have missing information on area of residence for some students in a 
school. Aggregate school information on the relative frequency distribution of its students 
over areas might be a basis for assigning area probabilities to students whose area is not 
known. Such structures are referred to as a missing identification structures. They can be 
handled by similar procedures as those for multiple membership structures. Hill and Goldstein 
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(1998) discuss more fully both multiple membership and missing identification models with 
further examples. We take up this example again in Section 7.6. 
5.2 Classification Diagrams And A More General Notation For Cross-Classified And 
Multiple Membership Structures   
The notation and formal representations of models introduced earlier was that which was first 
introduced in the early development of multilevel methodology. They explicitly assist in 
gaining an intuition about the structure of hierarchical effects. They are also used in many 
published applications and it is mainly for this reason that they are considered in this review. 
Anyone making detailed examination of some of the applications reviewed will benefit from 
this prior exposure to these formalities. 
However, as models and structure become more complex this notational framework though 
still explicit becomes somewhat cumbersome and sometimes difficult even for those with 
more than a passing acquaintance with statistical modelling. For these reasons Browne et al 
(2001) introduced a more simplified notation for model description. This made certain 
structural features of the models implicit but which could then be understood by association 
with ‘classification diagrams’, which were introduced as a schematic representation of 
structures. Taken together the description and diagram facilitate an understanding of the 
nature of complex structures. Figure 13 sets out the simplest types of such diagrams  

 
  A    B        C 
Key: 
A: 2-level hierarchical model 

B: 2-level cross-classification at level 2 
C: 2-level multiple membership model                    

 Figure 13: Classification Diagrams for Two Level Hierarchical, Cross-Classified 
and Multiple Membership Structures 

Such diagrams enable us to classify data structures as hierarchical or crossed or combinations 
of these at various levels or to see how multiple membership fits into the frameworks. Boxes 

Pupil Pupil Pupil 

School Primary 
School 

Secondary 
School 

School 
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represent unit classifiers at various levels and those at the same horizontal level in cross-
classifications are at the same conceptual level in the hierarchy. Double arrows indicate 
multiple membership relationships. Thus in diagram C in Figure 13 we have possible multiple 
membership of schools by students. We should note that this diagram does not imply that all 
students are in a multiple membership relation. It admits the possibility for some students. 
Many if not most students may be hierarchically arranged beneath just one school. 
The newer model notation does not involve complicated multiple subscripts but to understand 
the structure involved should be read in alongside its corresponding classification diagram. In 
this new notation the basic two level variance component hierarchical structure associated 
with diagram A in Figure 13 is written as 
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We have two of what are now termed classifications, with students as classification 1 and 
schools as classification 2 as indicated by the superscript on the random effects. The subscript 
i is attached to lowest level unit classifier, in this example the student, and there are as many 
units in this classification as there are responses in the data. This subscript uniquely identifies 
every measurement and random effect. The use of the set notation )........,2,1()( Nistudent !  
is a reminder that a student labelled i is one of the N level 1 units and hence observations in 
the data. The set symbol ! means ‘is an element of’ or ‘belongs to’. The index i can thus 
range over possible values 1 through to N. The school (i) identifier is taken to mean the 
school that student i belongs to. Formally school (i) is called a classification function that 
maps the lowest level units, students, onto schools. The set relation )........,2,1()( Jischool !  
simply means that the result of this assignment is one of the J possible schools in the data. We 
note again that it is also the usual convention that we specify the assumptions we are making 
about the distribution of the various random effects. Normality is usually assumed, although 
estimation and inference procedures are often robust to departures from this. Thus in the 
above formal representation, ),0(~ 2

)2(

)2(

)( uischool
Nu !  means that the level 2 school random effect 

is distributed normally around zero with the variance component 2

)2(u! . In keeping with the 

notational consistency the lowest level student variance within school is denoted by 2

)1(u! . 
Taken together with the supplementary diagram A of Figure 13 the above formalisation serves 
to completely specify the model and its structure. 
Together with diagram B in Figure 13 the basic cross-classified model under consideration 
can be written as  
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Since the only subscript used in such representations is that for the lowest unit writing down 
of models in this notation can be extended indefinitely for very complex structures involving 
any number of crossed or hierarchical sets of any units at many levels. Browne et al (2001) 
give a comprehensive treatment of the representations. It will be noted that the equations 
themselves do not explicitly show the nestings and crossings.  A modern estimation procedure 
Monte Carlo Markov Chain (MCMC) which we review later also does not require knowing 
the exact nesting structure providing there are unique identifiers in the data for each 
classification. Thus this sits very easily with the notation. However, associating each model 
with a classification diagram will reveal the structure of effects for easier communication and 
interpretation.  

The basic structure of the two level classification diagram C of Figure 13, in which pupils are 
multiple members of schools, can also use this new notation. However, for the sake of 
completeness, and because it may clarify certain features when we move to the new notation, 
we first of all write the model in the explicit if somewhat tricky older notation. This will also 
be useful if further reference is required from this review to the original detail of published 
applications which until very recently used this older notation.  In this, following but slightly 
adapting Hill and Goldstein (1998) and Rasbash and Browne (2001) the model is written as  
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We note that {j} now means the full set of school {1, 2,…………J} and it is included as a 
subscript in the various quantities to emphasise the two level multiple member nature. The 
level 1 units are again indexed uniquely by i and may be members of some (or even all) of the 
schools in {j}. The index h uniquely indexes schools. The 

ih
!  are the pre-assigned weights 

using criteria we have discussed. We emphasise again that for each pupil they usually sum to 
unity. For example suppose we have identified that a particular pupil 3, say has attended two 
schools, numbers 7 and 59 with weights 0.6 and 0.4 respectively, the model expression 
becomes 

3{ j} 3{ j} 0,7 0,9 0,3{ j}y X 0.6u 0.4u e!= + + + .  

We note that the weights attached to other schools in the set {j} are all zero. In most practical 
applications this will be the case and most of the weights entering into 
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=" " will be zero. Also the majority of pupils may not be in a multiple 

member relation and attend only one school. For such a pupil the weight will be unity for this 
school and zero for the rest. Thus suppose pupil 7 attends only school 6 then the expression 
reduces to one familiar for strict hierarchical structures:  

7{ j} 7( j) 0,6 0,7{ j}y X u e!= + + . 

However, in classification notation providing we interpret in association with diagram C of 
Figure 13 we can write the full model as 
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Most of the components of this characterisation follow from our previous discussion of the 
notation. However, we can note the use of the set symbol !  in the definition of the 
classification function school (i) rather than as previously ! . The latter would uniquely assign 
a school to case i. However the function can now assign more than one school in the set 
(1,2,3……….J). The symbol !  means ‘is a subset of ‘ and can be interpreted as school (i) 
assigning possibly more than one of the elements of (1,2,3……….J) to the case. Browne et al 
(2001) also consider how the diagrams and model specifications can be extended to more 
general models with more levels, combinations of hierarchical, cross-classified or multiple 
membership structures and also regression coefficients random across various classifications.  
 

5.3 Examples Of Application Of Multiple Membership And More Complex Structures 
5.3.1  Teachers, teaching groups and students in GCE Advanced Level Results 
 (Fielding (2002) 
The data came from a wider study of the cost-effectiveness of GCE Advanced Level teaching 
groups in six colleges in England, which at the time of data collection were funded by the 
Further Education Funding Council. Part of this study was designed to highlight various 
effects on outcomes before attributing per capita costs to student provision. The basic 
response was the A level points score on 3683 level 1 units, subject entries. These entries 
were hierarchically nested within 314 different subject teaching groups within the six 
colleges. There was a nesting of groups within colleges to effectively form a three level 
hierarchy. However, since there were so few colleges these were handled by college fixed 
effect indicators rather than random effects. Thus the structure will be effectively two level 
for modelling purposes. A total of 1511 students were involved in the entries with students 
taking several subjects and being contained in several teaching groups.   
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Thus entries are also nested within students. It was desired to control for student effects 
before identifying group effects which could then be related to costs in the wider study. We 
thus form a cross-classification of student by teaching group at Level 2 in which entries are 
nested. In addition it was desired to control for teacher effects not only to properly adjust the 
unobserved teaching group effects but also to study teacher effects in their own right. 
However entries were in a multiple member relation to a total of 115 teachers since several 
teachers may be involved in the particular subject group provision throughout the two years of 
its teaching. A majority of teachers were also involved in more than one subject group so the 
possibility of confounding of teacher and group effects was minimal. Thus we have an 
additional classification at level 2 by teacher to make a three way classification. The weights 
chosen in the analysis presented were the proportion of time of the teaching provision for the 
A level entry from each teacher handling the group. As mentioned above the actual choice of 
weighting scheme proved relatively robust. A classification diagram for this situation is given 
in Figure 14.  

 
Figure 14: A Three Way Cross-Classification of A Level Entries by Groups, Students 

and Teachers at Level 2 with Multiple Membership of Entries Across Teachers 
 
A brief model specification to be read in conjunction with Figure 14 is 
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In the course of development various specifications of fixed effect explanatory variables in Xi 
were used and models estimated by the variant of iterative generalised least squares, to be 
explained in a later section. The results of one such analysis are displayed in Table 3.  

Teaching 
Groups 

Students Teachers 

A-level subject 
entries 
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Fixed effect coefficients (! ) Estimate Estimated 
standard 

error 

Intercept ( Base : small FE college 1, social science 
subject, male teacher, teacher has no degree, teacher has no 
teacher training)  

-4.986  

Student GCSE Average  

(prior ability control) 

1.732*** 0.057 

Standardised teacher age  -0.014 0.017 

Standardised teacher experience  
(years of service) 

0.021 0.020 

Teacher has a degree but no higher degree 0.034 0.513 

Teacher has a higher degree  0.204 0.542 

Teacher has a Cert. Ed 0.357 0.410 

Teacher has a Postgraduate Certificate of Education 0.434** 0.148 

Female Teacher  0.374 0.267 

   

Random effects variance    

Level 2: Students 2.761 0.118 

Level 2: Teaching groups 0.304 0.112 

Level 2: Teachers 1.540 0.257 

Level 1 Residual for entries 3.910 0.201 

Table 3: A Level Entry Performance in Six Post-16 Colleges. A Model Cross Classifying  
Student and Teaching Group Random Effects and Multiple Membership Across 

Teachers. 
*** Significantly different from zero with p-value: p<0.001 
** Significantly different from zero with p-value:  0.0001<p<0.01 

Note: Dummy variable indicators were included for college fixed effects and for eight broad 
groupings of subject discipline type (see Fielding (2002) for full details) but for brevity these 
are not displayed. The teacher characteristics as fixed effects were formed as weighted 
averages of the values for individual teachers contributing to an outcome using the same 
weights as in forming the multiple member random effect. Teacher age and teacher 
experience were then standardised across the data to have mean zero and standard deviation 
unity. 
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Although there is a full discussion in the original source a few important points may be 
mentioned. Firstly even after controlling for their original ability there is still a large amount 
of effect variation due to unobserved characteristics of students. It was thus important to 
control for these as the model does before going on to estimate teaching group residuals as a 
basis for adjusted group effects. Similar comments apply for control of teacher fixed and 
random effects. Indeed after control for teacher and student the teaching group variance is 
now relatively small. A stark conclusion of this analysis is that teachers do matter. However 
trying to explain teacher influence in terms of standard background characteristics such as 
age, experience, training or educational level is inconclusive on this evidence. Apart from the 
Postgraduate Training indicator, none of the teacher fixed effect characteristics are 
statistically significant and hence discernable in this data.  The large variance of the residual 
random teacher effect indicate the importance of as yet unobserved or undiscovered teacher 
characteristics worthy of more detailed research. 

We must, however, in such multiple members relations be careful not to over-interpret the 
relative sizes of the residual variance components at level 2. At first sight on converting to 
percentages it might appear that the relative residual contributions of students, groups, and 
teachers random effects to grade variation are respectively 60%, 7%, and 33%. This might be 
an appropriate assessment for cases where there is only one teacher involved. However, using 
basic statistical theory the teacher contribution to the model variance at level 2 will be 

{ !
" )(

22

)4(

iteacherh

hiu
#$  } where 2

)4(u!  is the residual variance amongst teachers. Thus for example if 

there are two teachers involved with equal weights 0.5 say the contribution to the overall level 
2 variance in such cases will be 1.54*(0.52 + 0.52)= 0.77. The relative contributions of 
students, groups and teachers are now 71%, 9%, and 20%. The combined teacher effect is 
now less influential. This accords with intuition. We might expect that the more teachers there 
are involved the more there will be dilution of effects of particular ones and high beneficial 
effects of some teachers will be counteracted by weaker effects of others. 

5.3.2 Spatial models using multiple membership relations 
In studying area effects, measurements on individuals within an area may be supposed to be 
influenced by both by an effect of that area and the effects of surrounding contiguous areas. 
Intuitively, this idea might be considered reasonable. Areas used in applications, such as 
electoral wards or postcodes are administrative constructions and may be somewhat artificial 
for assessing spatial impact on the process under study. Neighbouring areas which are close to 
one another geographically may share social or economic factors influencing outcomes in the 
area of interest. In studying area effects on educational progress or health status it may be 
realistic then to include not only administrative area of residence but to effects of surrounding 
areas. One way of doing this is to include a random effect for area of residence but also 
separately a multiple membership effect term for surrounding neighbour areas. We are here 
modelling two separate random effects for area of residence (classification 2) and 
neighbouring areas (classification 3). Figure 15 gives a basic classification diagram for this 
situation.  
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Figure 15: A Cross Classification of Area of Residence and Neighbouring Area in a   

     Spatial Model, with Multiple Membership of Several Contiguous Neighbour Areas. 
 

The corresponding model is expressed as 
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The choices of equal weights for neighbours suggest itself unless there are some good reasons 
to the contrary. Thus if area(i) has ni  neighbours so that there are ni terms in the sum for the 

multiple member effect then the weighted effects expression becomes !
" )(

)3( /
iareaneighbourh

ih nu . In 

some cases all the areas in the data are neighbours to other areas so that the set 
)...,..........,2,1( A  is the same as the set )...,..........,2,1(

N
A . Thus there are two contributory 

random effects in the model for each particular area though they arise from two conceptually 
distinct classification sources. We might, however expect these two effects to be correlated so 
we can in such cases extend the model to allow for this by incorporating covariances for the 
two effects. Using equal neighbour weights Langford et al (1999) do this for a model of 
mortality using postcode sectors in 1993 for the Greater Glasgow Health Board. Table 4 
below is adapted from the results in this source. The correlation between an area’s direct 
effect and its neighbour spatial effect is 0.774 suggesting that areas have similar relative 
effects when they are contributing as neighbours and directly as area of residence. It might be 
noted that the neighbour effect has a larger variance than the direct effect. However, we 
should remember the caveat of the previous section The total level 2 variance for mortality in 
an area(i) is dependent on the number of neighbours ni and with equal weights is given by 

Area Neighbour Areas 

Observations  
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!
! + . As Langford et al (1999) point out, ‘the mean number of neighbours per 

postcode sector in the Greater Glasgow Health Board is 5.4; this implies a total variance of 
0.0333 (on average), of which 49% arise from the spatial neighbour effects’ 

 

Variances and covariances in 
mortality 

Estimate Estimated standard 
error 

Area of residence effect ( 2

)2(u! ) 0.0174 0.0054 

Effect of area on neighbouring 
area’s mortality ( 2

)3(u! ) 
0.0865 0.0085 

Covariance of area effect and 
neighbour effect (( )23(u! ) 

0.0300 0.0334 

Correlation of an area direct effect 
and  its neighbour effect  

)0865.0(*)0174.0(/)03.0(  
=0.774  

 

Table 4: Postcode Area Components of Variance and Covariance for Glasgow Mortality 
Data 

 
Such spatial models may have potential use in the education field where area effects to proxy 
student background effects may be under consideration. Goldstein (2003) also raises the 
possibility that they may be used to model interacting schools. Thus for example the effects of 
schooling may come not only from a school a student attends but also from neighbouring 
schools that may be competing for resources, or share a governing body, etc. A model similar 
to the above might be appropriate for this situation possibly also with more complexity by 
adding other classifications such as area of residence together with a spatial model for 
neighbourhood areas. Leyland (2001) considers variants of these spatial models for the 
incidence of lip cancer in Scotland over the period 1975-1980. This example is also 
mentioned by Browne et al (2001) in the context of current MCMC implementations which 
are constrained in that they do not permit correlations for effects arising from different 
classifications. 

Such models can be complicated even further if for instance we are studying the continuity of 
effects. We may for instance note that a student changes area of residence over the course of 
his time at a school.  In this case we might want to weight areas in some way so that instead 
of a single term )2(

)(iarea
u  and area (i) being a one to one mapping, we have a weighted term for 

several areas of residence. Of course if we have also included neighbouring areas as an effect 
these will also change and their number under consideration may obviously increase. For 
example suppose an individual has two areas of residence with weights 0.3 and 0.7, attaching 
perhaps more weight to current area. The neighbours of both areas will also now enter into the 
weighted multiple member term for neighbour and we would have to calculate adjusted 
weights for these to reflect the changes. In educational settings we could also model the 
dynamics of school mobility and effects of neighbouring schools in this type of model in a 
similar flexible way.  

6 Estimation Methodology And Software issues 
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6.1 Introduction  
At this stage it is worth discussing the distinction between multilevel models and their 
estimation and a body of methodology called Generalised Estimation Equations (GEE) for so 
called ‘marginal models’ (Zeger et al (1988), Liang et al (1992)).  When dealing with data 
these latter models start with a formulation for the covariance structure for the non -fixed 
effects part of models. For example, but not necessarily, they may be based upon the structure 
of multilevel random effects such as we have been examining. However, they aim to provide 
estimates with acceptable properties only for the fixed parameters of the model. They treat the 
existence of any random effects and associated variance parameters as a necessary nuisance 
and without providing any explicit estimates for them. More generally GEE techniques for 
marginal models have useful properties for large samples when the exact nature of the random 
structure is unknown. Thus if interest lies mainly in the fixed parameter coefficients this 
approach may be useful. Even here, though they may be statistically inefficient if an assumed 
random structure is inappropriate. However the central substantive distinction is that marginal 
models seek to answer a different range of research questions. From a multilevel perspective 
the fact of not modelling random effects explicitly means they do not offer information on 
sources of variability that potentially may be even more important knowledge than average or 
conditional effects of explanatory variables. Thus in modelling student progress knowledge of 
variation between schools and how this variation depends on school factors will be important 
data. Although the structure may inform assumptions about the residual covariances in GEE it 
does not explicitly consider such information. Much the same considerations apply to 
estimation procedures we noted previously which use robust estimators for standard errors 
which recognise clustered data structures but the main model estimation still operates within 
the framework of marginal model ideas. Lindsay and Lambert (1998) discuss further the 
limitations of marginal models. The glossary by Diez Roux (2002) is also useful in clarifying 
the distinctions. 
6.2 Approaches To Estimating Complex Multilevel Models  
There are two broad approaches to estimation of linear multilevel models for complex 
structures. Up until fairly recently it has been mostly done within the general Maximum 
Likelihood (ML) framework though technical details of its implementations which often 
require approximations to make it computationally feasible vary across different softwares. 
The method is based on the idea of choosing estimates of parameters that maximise the 
probability (produce the ML) of observing the data that are actually observed given the 
model. More recently Bayesian estimation methods such as Monte Carlo Markov Chain 
(MCMC) estimation for have been developed. The actual technicalities of this approach to 
estimation and its philosophy are quite complex and beyond the scope of this review. 
However, it might briefly be noted that Bayes procedures adopt a slightly different approach 
than the standard ‘frequentist’ one to statistical inference in what is often referred to as the 
‘Fisherian’ tradition. The essential idea is to regard the unknown model parameters to be 
estimated not to have fixed but unknown values but to express uncertainty about them by 
supposing their values are themselves governed by a probability model. Prior information on 
this uncertainty is then used along with collected data to update the knowledge of this 
uncertainty. The Bayesian method was popularised by a paper of Lindley and Smith (1972).  
Within the Bayesian framework the MCMC designation refers to the particular way this 
updating of knowledge of parameter uncertainty operates; by simulating the complex 
probability models for them. The method has become feasible for complex statistical models 
due to rapid advances in the computational environment which such a simulation approach 
requires. Modern books such as Congdon (2001) and Lawson et al (2003), with software 
guides such as Spiegelhalter et al (1997) and Browne (2002) start with very readable 
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introductions and many useful examples. There are philosophical and methodological features 
which might make a Bayesian approach attractive but which are still hotly debated amongst 
statisticians. However aside from this some writers have suggested other motivations for their 
use. One arises from problems that may arise in using other approaches due to size and 
complexity of the data (Browne et al (2004)). For instance, in some of the complex structures 
we have discussed the sheer number of random effects may make implementation of ML need 
large amounts of memory. It may often become computationally infeasible whatever software 
implementation is used.  By contrast MCMC methods may become feasible but to set against 
this they may be computationally very demanding in terms of processor time. Further the 
simulation procedures used must be carefully monitored to ensure they are working properly. 
In these sense they are not routine once a model has been carefully specified.  

The implementation and performance issues in Bayesian and likelihood fitting of multilevel 
models are explored in some detail by Browne and Draper (2000). Browne (2004) also 
introduces some newer adaptations of MCMC methodology for crossed random effects model 
which may make then statistically and computationally more efficient. Clayton and Rasbash 
(1999) using data augmentation develop a procedure for crossed random which is in some 
senses a hybrid of ML and Bayesian methods but this is not routinely available in software 
and requires some programming of macros.  Hox (2000), Chapter 3, gives a fairly non-
technical discussion of the range of estimation procedures available and contrasts them. 
Goldstein (2003) gives a full theoretical appraisal and technical discussion of the range and 
variety of estimation algorithms within these broad frameworks, including the supplementary 
use of such approaches as bootstrapping which may improve estimation. An examination of 
these sources will reveal that a full understanding of the ramifications of estimation 
methodology and the vagaries of its computer implementation is daunting to even those with 
technical experience and skills in statistical modelling. Thus we will not attempt here a 
discussion of Bayesian inference and MCMC in particular. However, with statistical guidance 
and some familiarity with the modelling background a seasoned researcher might be able to 
use the wide range of software available and be able to interpret analytical results. Indeed as 
Hox (2002) says, ‘ Software does not make a statistician but the advent of powerful and user 
friendly software for multilevel modelling has had a large impact in many research fields…..’ 
6.3 Software 
The specialist multilevel software most familiar to users in the UK is arguably MLwiN 
(Rasbash et al (2004)). This software has been developed for fitting large and complex models 
using both frequentist likelihood and MCMC approaches (Browne (2002). MLwiN has been 
under development since the late 1980’s first as a DOS based programme, MLn and since 
1998 in a fully fledged windows version, currently in release 2.02. It is produced by the 
Centre for Multilevel Modelling at the Institute of Education, University of London but now 
moved in 2005 to the University of Bristol. The software development has largely been 
funded by the Economic and Social Research Council alongside development of advanced 
statistical methodology and research applications, some of which is the subject of this review.  
At the heart of the 'frequentist' approach in MLwiN is the Iterative Generalised Least Squares 
(ILGS) procedure introduced by Goldstein (1986) and its implementation as discussed by 
Goldstein and Rasbash (1992). These articles discuss fully how certain features of a 
multilevel model lend themselves in the implementation to the design of computationally 
efficient algorithms for the required matrix operations. However, it has also been adapted 
successfully by efficient model formulation to encompass the more complex structures that 
have been under discussion. Goldstein (2003) discusses how it is formally equivalent to the 
maximum likelihood ‘Fisher scoring algorithm’ of Longford (1987), which was another early 
attempt at implementing the iterative estimation. The necessity for an iterative approach to 
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maximum likelihood is stressed by all developers since analytical formulae are nigh on 
impossible with such complex models. The MCMC estimation procedures in the latest release 
of MLwiN are recent but they are rapidly developing and now encompass possibilities for a 
wide range of complex model structures such as we have discussed. A further statistical 
advantage of MCMC that has been widely noted is that they yield exact inferences in 
situations where maximum likelihood only provide approximations; in small samples for 
instance. 

MLwiN has many other advanced features not available in other packages and a flexible 
macro language which enables methodological development for even more advanced 
modelling. It also has a very user friendly symbolic and graphical interface so that it is 
designed for fully interactive use. The researcher is easily able to explore modify and develop 
from his results in a beneficial way. Some other software packages which may just give 
output from fitted models do not so easily allow this. The other main specialist software used 
by multilevel modellers mainly in the US is HLM (Raudenbush and Bryk (2002)) which uses 
the alternative EM algorithm for iterative ML also developed for random effects models by 
Laird and Ware (1982).  This approach has been incorporated into many software packages 
mainly because of its computational simplicity. Zhou et al (1999) and Sullivan (1999) review 
and discuss the use of HLM and some other packages. HLM has also been widely used for 
educational data arguably since that is the substantive interest of its originators and many 
original applications were in this area. By similar adaptations to those used in MLwiN it can 
also handle the cross-classified effects, but it is restricted in the number of levels in the data 
one can use. The most recent version is HLM5 (Raudenbush et al (2005)). 
Judging by the reference and correspondence on the LISTSERV multilevel mailing list a third 
major package in frequent use for multilevel linear models is the procedure PROC MIXED 
for random effects embedded in the general purpose SAS software ( SAS/Stat (2000)). It can 
handle crossed structures up to two levels. It uses iterative maximum likelihood by a 
combination of Fisher scoring and Newton- Raphson approximations. To researchers familiar 
with the concepts of multilevel structures the interface can be a little tricky since levels are 
not explicitly recognised for the general random effects models it considers. They have to be 
introduced by specially arranged input and parameter files. However, Singer (1998) gives 
very useful details on how this is done and instrumental examples. Another useful tutorial for 
designed experiments is Spilke et al (2005). De Leeuw and Kreft (2001) argue that the use of 
SAS may not be efficient for these implementation reasons; also because one has to carry the 
enormous overheads in computing capacity that the whole SAS system carries. The trade off 
is that many use SAS as their all purpose statistical system and may be familiar with its 
syntax and interface. For very large data sets and complex structures with many random 
effects, when other software may be limited computationally, the software GENSTAT (Payne 
et al (2005) holds considerable promise. Recent versions include a very efficient 
implementation of restricted maximum likelihood procedures pioneered by Patterson and 
Thompson (1971) and further developed by Gilmour et al (1995) and Pan and Thompson 
(2000). However, the user interface is to some not very transparent or friendly. 

Procedures for fitting linear and other multilevel models are now also available embedded in a 
range of major general statistical software packages. STATA (Stata Corp (2005) uses an 
iterative ML method known as Gauss-Hermite quadrature can handle nested and crossed 
effects up to two levels. There are also some recent possibilities in SPSS, which is the general 
software most widely used in the social science research. In the past few years there has also 
been a rapid development of the range of software that has features for carrying out basic 
multilevel modelling or can with ingenuity fit more complex or specialised models using 
macro languages. This is just about keeping up with the rapidly growing methodological 
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literature and literature on ever more diverse ranges of applications. Goldstein (2003), 
Chapter 15 lists eighteen packages which have some facilities and he gives references and 
notes on each one’s capabilities.  Useful comparative reviews of some of the packages are de 
Leeuw and Kreft (2001), Zhou et al (1999). Fein and Lissitz (2000) compares the specialist 
software MLwiN and HLM. Since Goldstein’s list the range has been extended as may be 
seen by the maintenance of the series of reviews on the Centre for Multilevel Modelling 
(CMM) webpage, www.multilevel.ioe.ac.uk. This set of reviews contains detailed evaluation 
of how various pieces of software copes with a range of advanced models using common 
example data sets. Of particular relevance here are the comparisons of handling crossed –
effects. 
6.4 Brief Comments on Generalised Models For Discrete Responses 
The last few sections have focussed in the main on methodology and software for linear 
models of continuous responses.  For discrete response (e.g. binary) generalised linear models 
maximum likelihood is not straightforward. Beyond fairly basic two level hierarchical models 
they may involve considerable computational load involving extensive numerical integration 
techniques (see for example Hedeker and Gibbons (1994)). Some of the software mentioned 
above and other pieces do have facilities and possibilities are further evaluated in the reviews 
by CMM. The suite of programmes MIXOR and MIXNO specifically designed for non-
continuous response is widely used. (Hedeker (1999), Hedeker and Gibbons (1996a, 1996b)). 
Within STATA there are advances in the use of the GLAMM procedures (Rabe-Hesketh et al 
(2004), Skrondal and Rabe-Hesketh (2004). These use an improved method of numerical 
integration called adaptive quadrature. Practical illustrations of this use of STATA are 
provided by Rabe-Hesketh and Skrondal (2005). The main drawbacks of such applications 
might manifest themselves in very complex structures where integration over many random 
effects is necessary. For these reasons a variety of approximation methods have been used 
which are called quasi-likelihood. MLwiN adapts its IGLS procedures in a variety of ways to 
do this and makes possible the fitting of complex structures. The GLIMMX and NLMIX 
macros in SAS also use an approximate approach but the type of complexity possible is a 
little more limited. Brown and Prescott (1999) discuss these methods and practical examples 
for random effects though their focus is not particularly multilevel. The main practical 
difficulties with quasi –likelihood approaches is that they can break down due to non-
convergence for certain types of data a structure and they are still quite computationally 
intensive. 

The MCMC approaches in MLwiN have also been applied successfully to non–continuous 
data in the presence of complex random effects. The general purpose WINBUGS package 
(Spiegelhalter et al (1997)) also uses a Bayesian approach to estimation and can be adapted 
quite successfully to a range of complex multilevel models of either linear or generalised 
types. Lawson et al (2003) compares the use of MCMC in MLwiN and WINBUGS and 
explores their differing potentialities through examples. 
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7 More Applications In The Literature And Potentiality For Similar 
Approaches in Education Research  
In main body of this review we have concentrated on applications to exemplify the key 
features. This section reviews some areas of the literature where further successful 
applications have been used. They may be useful in the development of statistical models in 
many areas of research related to education where similar structures can arise. Although some 
of the application areas we discuss have obvious and direct connections with education, some 
may appear remoter. However, we stress that the design features of these applications can 
have direct links with the advancement of educational research with, for example, the further 
attention to intervention designs or increasing availability of integrated data with a great deal 
of structural complexity. Lessons may be learned from other areas about how disentangling of 
effects may be handled in the context of these complexities. 

7.1 Health Research  
Health statistics is an area where there has been good deal of work involving complex 
structures. Some of these structures involve units that parallel those familiar in education with 
patients instead of students, doctors or nurses instead of teachers within institutional contexts 
such as GP practices or hospitals. Many of the complex situations we discussed previously 
arise with patients consulting different health service personnel on different occasions. We 
also have potential for different sorts of cross-classifications such as GPs by hospitals or 
consultants working in different hospitals. Multiple membership relations also arise such as 
when patients see several doctors. Ecob et al (2004) in psychiatry studies health outcome 
scores in a multilevel model with crossed random effects for assessors referral sources (GPs).  
Area effects are also important in the study of disease as we saw previously in our discussion 
of spatial models. Subramanian (2004) is a good review of their role in cross-classified model 
contexts. Clayton and Rasbash (1999) consider a complex cross-classified structure first 
addressed as a possibility by Echoard and Clayton (1998). The paper is also methodologically 
important since it introduces a variant of estimation known as data augmentation designed to 
overcome the computational difficulties first encountered with such large complex models 
(see Section 6.2).  The application concerns artificial insemination by donor and at level 1 
measurements are made on recipient women at each ovulatory cycle at which the response 
conception occurs. The data consist of 1901 women and 279 donors. Each donor made 
multiple donations and there were 1328 donations in all. A single donation is used for several 
inseminations. Figure 16 below is a classification diagram for this relatively complex 
situation. There are two crossed hierarchies; for women we have cycles within attempts 
within women; for donors we have cycles within donations within donors. The top level 
crossing is between woman and donors. Within each cell of this, which as we have seen 
induces a crossing of attempts by donor, we have also the possibility of a crossing of attempts 
by donations since donations can be used for multiple inseminations. There are now two 
random effects components at level 3, women and donors, and two at level 2, attempts within 
women and donations within donor. 
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Figure 16: Cross classifications at two levels for artificial insemination 
 

The interesting conclusion in this study is that after control for important covariates on such 
things as age of women and sperm count of donor, there is considerably more variation in the 
chance of successful insemination attributable to the woman hierarchy than that of the donor. 
In the context of educational achievement particular in higher education repeated attempts at 
an examination under different teachers, or possibly also in different institution, provide 
similar structures.  
Crossed random effects models also arise in human health epidemiological studies. Coull et al 
(2001), for example, consider a study where presence of a series of observations on 
abnormalities are nested within a three way crossing of new born infants, location of 
abnormality, and type of drug exposure. Rivellini and Zaccarin (2000) discuss factors 
affecting fertility in Italy using crossed random effects of place of residence and place of 
childhood residence. 

Zaslavsky et al (2004) uses a three level complex survey design on a range of consumer 
assessments of Medicare health plans in the US. There are three levels with sample 
respondent at level 1. Level 2 is a cross-classification of enrolment plan by Metropolitan 
Statistical Area within a state level 3 and a region level 4. The survey also was undertaken for 
five years and the effect of these years was allowed to be also random over the various 
classifications. The main focus was on the variance components though a small number of 
fixed effect covariates characterising the respondents were used. 
7.2 Survey Methodology And Interviewer Response Variance. 
The subject of response measurement error due to interviewer effects in surveys has been the 
subject of much methodological investigation over the years. Hox et al (1991) and Wiggins et 
al (1992) have studied hierarchical models of respondents within interviewers.  An example 
of a cross-classified structure might be where we have a design clustered by areas such as 
parliamentary constituency and/or ward. Interviewers are assigned to different areas. Cross 
classified models may then simultaneously study effects of areas and interviewers on survey 
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respondents. O’Muircheartaigh and Campanelli (1998) found that the effect of interviewers 
on non response was greater than that of the areas in which they were working. They extend 
this work in attempting to separate cluster design effects from interviewer effects in survey 
precision (O’Muircheartaigh and Campanelli (1999)). Other similar examples arise in 
longitudinal or panel research interviewer studies where there may be different interviewers 
on two or more occasions.  For example with just two occasions the set of interviewers on the 
first occasion may be crossed with the set of interviewers on the second occasion. The panel 
members are then nested within cells of this cross-classification. Pickery and Looseveldt 
(1998) and Pickery et al (2001) deal with this type of context. 

7.3 Social Networks 
Crossed random effects structures have also received some attention in the field of social 
networks. Snijders (1999) gives some detail on how level 1 units may be dyads or a directed 
relationship between a pair of actors. He gives an example of what a particular teacher (A) 
reports in a communication within another teacher (B) about individual pupils. Variables 
defined on that communication, such as how well the student is doing, form responses at the 
student level. The level 2 dyads in which such responses are nested involves not only two 
teachers but also the direction in which the report is made. Thus the dyads may be considered 
a cross classification of teachers by themselves, whether as the initiator in the dyad or the 
receptor. The level 2 dyads may in turn be nested hierarchically within schools. Thus we have 
two random effects for initiator and receptor. It is also considered that a reciprocity effect is 
useful which is akin to the use of an additional interaction random effect (see Section 4.2) 
Gender fixed effects are of interest so that three covariate dummies for the genders of each 
actor and whether they are the same are used. Van Duijn et al (1999) consider situations 
where individuals rank each others popularity. Some further examples of such type of social 
relation modelling are given by Snijders et al (1995), Snijders and Kenny (1999), and Snijders 
and Baerveldt (2003).  
7.4 Veterinary Epidemiology, Animal Ecology and Genetics 
An example of a complex multiple membership model is presence of salmonella infection in 
flocks of Danish chickens between 1995 and 1997. The example is considered in various 
ways in Goldstein (2003), Browne et al (2001) and Rasbash and Browne (2001). Each flock is 
kept in a house within a farm; a hierarchy. However, we wish to consider the effect of 
parentage of the flock which can be from a mixture of up to six parent flocks in a multiple 
member relation. These parent flocks are crossed with house within the farms. The flocks are 
also hatched within one of four hatcheries but this is handled by three dummy indicator fixed 
effects. The classification diagram is as Figure 17. Some important features that the reported 
analyses of this structure revealed were that most of the variation in salmonella infection was 
attributable to farms and parent flocks with some large hatchery differences. Residual 
estimates enabled extreme farms and parent flocks to be identified and scrutinised and this 
proved very useful in locating units which might be further examined. This idea of screening 
extreme and unusual units is one of the benefits of the ability to generate residual estimates.  
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Figure 17: The Salmonella Infection Multiple Membership Structure 
 
There is a large and old literature on the analysis of unbalanced designed experiments in 
agricultural and biological sciences, sometimes but not frequently with random covariate 
effects. Nearer to education they figure frequently in social and educational psychology.  
These are often formally equivalent to some of the cross-classified structures we have 
considered. An example, using the methods of Engel (1990), is Gengler et al (2004) which 
examined the crossed effects on cow’s milk yield of herd, test day and milking frequency in a 
larger study of the heritability of yields.  
There is some important recent work in psychology of depression which deals with human 
genetics incorporating complex crossed and multiple membership family effects (Jenkins et al 
(2003), Rasbash (2004)). A recent important example in bird ecology demonstrates the use of 
random effects modelling using quite complex arrangements of fixed and random effects and 
also extends to multivariate responses. The latter are clutch size, lay date, nestling mass, male 
survival, and female survival amongst 17 years of observations on great tits. The 
classifications involved are year, nest box, male parent and female parent all of which may 
affect the response.  
The examples in this section, though taken from a variety of areas demonstrate the flexibility 
of designs which can be handled by the complex cross-classifications. They may be pointers 
to situations in educational progress and other educational research which go beyond the 
examples discussed in Section 4 and which have a range of tangled effects of interest which 
need to be unravelled.  
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7.5 Transportation research 
In human ecology and transport research there is considerable interest in patterns of residence 
and factors affecting where people live and work and multilevel modelling has been applied 
quite widely in such areas (Bullen et al (1997), Jones and Duncan (1995), Jones and Bullen 
(1994)). Bhat (2000) considers a discrete choice dependent variable, mode of travel to work, 
and related it to such fixed effects as travel cost, ethnicity, income, and number of vehicles 
possessed for crossed random effects of location of work and location of residence. Such 
discrete responses, even directly mode of travel to school, are quite common as responses on 
students and these ideas are useful for showing how they might be handled in the context of, 
for example, school and area of residence effects. This authors claim that to the best of their 
knowledge this formulation of the model for discrete responses is a first. This claim is clearly 
incorrect. Methods for fitting such models using MLn, the precursor of MLwiN, were 
available by the mid nineties (Rasbash and Woodhouse (1995)).  

7.6 Missing identification of units 
Missing identification of which higher level certain lower units belong to is a common 
problem in multilevel data. However, we would not wish to drop such cases since this might 
seriously distort results. In school studies we might not know which school some of our 
students came from. This can be handled within a multiple membership relationship 
framework by using weights based on what we might know or assume about the probabilities 
that such units are members of each of the set of the higher level units. We usually have some 
information in the data that enables us to choose these reasonably. However, there is a slight 
variation from standard formulations which might have used probabilities directly as weights. 

Here if the probability of student i coming from school h am pih such that 
J

ih

h 1

p 1
=

=!   we 

choose as weights ih ihw p=  so that the weights no longer sum to unity. To see why we 
should do so in the missing identifier situation it is relevant to note that a student actually 
belongs to one and only one school even though we do not know which it is. This stands in 
contrast to a direct multiple relation where students actually belong to several schools and 
there is a weighted contribution from each. So for each unit with a missing identifier, since 
only one school affects the response, we would like the variance of this random effect to be 
school variance 2

)2(u!  rather than averaging and hence diluting this variability over several 
weighted school effects as happens with true multiple membership relations. If we do use the 
wih above we can see with a bit of basic statistical algebra that the school variance 
contribution is  
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which is what we would like it to be. 
Hill and Goldstein (1998) consider some practical applications of this idea including 
extensions to mixtures of cross–classified, multiple membership and missing identification 
structures. In progress studies, for instance, we might wish to associate students in a multiple 
membership relation with a number of schools they might have attended, including their 
current school, over the course of a period up to the present point at which their achievement 
is recorded. We would like to assign weights to schools in ways that might appropriately 
reflect in our judgement the extent of the effects of these schools to current achievement. 
Suppose we are just considering school currently with school last year and decide it is 
appropriate to give weights 0.7 and 0.3 respectively. With full historical data on school 
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attended a straight multiple membership model might be analysed. However, we might not 
have such historical data for many students but for such students may have ancillary 
information that enables assigning probabilities and hence weights wih for last year’s school. 
In a multiple membership model the current school would receive a weight of 0.7 and other 
schools a weight of 0.3wih. Of course this might be extended to also accommodate students 
whose current school is also unknown. Goldstein (2003) also considers how this idea might 
also be exploited to cover missing location identities in the release of census data and which 
often occurs to preserve confidentiality.  
7.7 Generalisability theory  
The approach known as ‘generalisability theory’ (Cronbach and Webb (1975)) can also be 
formulated as a cross-classified random effects model (Schroeder and Hakstian (1990)). A test 
having a battery of items such as ratings is administered to a set of individuals who may be 
further nested within other units such as schools. Item variance is studied in combination with 
student effects in a cross-classification of students and items. Since we have only one unit per 
cell we cannot here separate out an interaction variance from the residual. Hox (2002) 
comments that such an approach can be adapted to examine reliability of student grades ( such 
as degree classifications) which are the result of combining many marks or grades where 
variation of grades is affected by class groups, students, teachers, exercises within modules 
etc. These can be conceived of as random effects arising from a many way classifications 
(Chronbach et al (1972)). Crossley et al (2002) uses the generalisability theory idea in 
assessment of professionals’ performance (surgeons) in medical education where there is a 
crossing of variety of situation types, surgeons, and assessors. There is a close link between 
this approach and that of Jayasinghe et al (2003) discussed below.  

7.8 Psychometrics 
A discussion and illustration of cross-classified models with examples in psychometrics is 
given by Van den Noortgate et al (2003), and which have obvious relevance in educational 
psychology and educational assessment and test measurement. 

7.9 Further examples in education  
Jayasinghe et al (2003) study assessor ratings in the peer review process of large grant 
proposals to the Australian Research Council. The methods may be more widely applicable to 
other forms of peer review such as publications, staff appraisals, job interviews, or elections 
to learned societies. The situation is that proposals are rated by more than one assessor and 
each assessor can review several proposals. This forms a cross-classification of level 1 rating 
by proposal and assessor at level 2 nested within a level 3 of disciplinary fields.  A large 
number of fixed effect covariates representing characteristics of the proposal, its proposer, the 
assessor and interactions between them are considered. Some very interesting conclusions 
were reached about these covariates but an additional finding was that even after such a 
determined attempt at covariate control there was still a large amount of unexplained variance 
between assessors. 

Simonite and Browne (2003) study modular degree courses in which grades are nested within 
a cross-classification of students and modules. This example is also very thorough in that it 
investigates a wide variety of covariates and interactions, allows random regression 
coefficients across students (e.g. year of study for student) and complex variance for the 
module grades (project or not, for instance). This study was also very important 
methodologically. It showed that there were considerable differences in some important 
conclusions when hierarchical models nesting module entries with students and ignoring the 
clustering of students within modules was used.  This  structure is similar to the example of 
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Fielding (2002a) and Fielding and Yang (2005) discussed above where ignoring the fact that 
A level students belonged to several teaching groups had similar less than benign 
consequences.  

McCaffrey et al (2004) have also used cross-classified effects in modeling teacher value-
added. Bell (2003) analyses student degree performance dependency on university entrance 
qualifications within a structure of university crossed with school attended. Teitler and Weiss 
(2000) use the third wave of the Philadelphia Teen Survey to estimate cross-classified two 
level models to see how much census area and between school variability exists in the timing 
of youth’s initiation to sexual intercourse. Attempts are made to assess the extent to which 
school variation is attributable to race and normative environments of schools. May et al  
(2004) in a study of an educational intervention known as America’s Choice recognised the 
importance of mobile students and cross-classified students by school attended for those 
attending more than one school during the span of the intervention. 

 

8 Conclusion and Additional Comments 
This review has concentrated in the main on linear models for continuous responses and to see 
how the random effects structure can be complex in various ways. We have also touched a 
little on generalised linear models for discrete and category responses.  In conclusion we 
might mention developments for a few other issues which may also incorporate possible 
complex random structures.  

• In a multivariate response situation we may have observations on several dependent 
variables observed simultaneously for each level 1 unit. These can also then vary and 
covary at higher levels. In addition to studying the structure of the variance over levels 
for each variable we will want also to examine how the covariances and correlations 
are structured in this way. A special case is where some measures are made at level 1 
and some at higher levels so that responses for level 1 units within the higher level 
units are constant for these latter. We might for instance have each child's rating on 
some aspect of the class environment together with the class teachers. Such special 
cases can be accommodated by IGLS estimation in MLwiN but the current MCMC 
implementation requires the response variables involved to both be at level 1.  Yang 
and Woodhouse (2001) conduct a two level multivariate multilevel analysis for 
various combinations of GCE A level mathematics that students can take. This 
analysis will also show that it is also not necessary for measurements of the response 
variables to be present for all observed units as would be the case for traditional 
multivariate analyses. Some measurements may be missing randomly or by design but 
all level 1 units can still be included efficiently in the analysis. This feature also means 
that there are procedures for the efficient design and modelling of complex rotation 
and matrix sample survey investigations (Goldstein (2003), Chapter 4). The 
multivariate idea also provides a general model for meta analysis where several 
studies (level 2) units are involved for some of which responses are available only in 
summary form at level 2 and for others detailed level 1 responses are available 
(Goldstein et al (2000b)) 

• The ability to model multivariate responses can be adapted to cover a number of other 
situations which on the surface have different features. An example is the extension to 
multilevel situations of the sample selection idea of Heckman (1979). The situation is 
that the response observation is missing for some units in ways that are related to 
variables in the model. If we can construct a supplementary model for the probability 
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of being missing then Goldstein (2003) shows how this can be set up so that the two 
equations can be simultaneously estimated efficiently in the form of a bivariate 
response multilevel model.  A similar idea can be applied to multi-process models. 
Here there is a target model of interest and equations for related auxiliary processes 
that can, for instance, be necessary for a specification of the situation. A common 
situation is ‘endogeneity’ of an explanatory variable in the target model, where this 
variable is related to the random effects in this target model. In the educational 
production function equations of Levačić et al (2005), which related Key Stage 3 
achievement to a number of explanatory variables, the resource and expenditure 
variables are examples. The multilevel analyses conducted in that report set up 
auxiliary equation for the expenditure process using specially written macros and 
efficiently estimated them within the framework of a bivariate response model. Steele 
(2001) gives another example of this idea and is currently developing advanced 
methodology on multi-process models under the ESRC Research Methods 
programme. Details may be found at www.multilevel.ioe.ac.uk. Endogeneity in single 
level models have often been handled by instrumental variable (IV) methods, 
particularly in the econometrics literature. For the most part such an approach was 
adopted by Levačić et al (2005). Instrumental variable approaches have been 
developed for multilevel models by Spencer and Fielding (2000, 2002). The main 
problem with IV methods is that they can be quite inefficient with low precision for 
estimates unless some detailed care is exercised. Another multilevel approach where 
no explicit second process is specified is the Conditional Iterative Least Squares 
estimation of Rice et al (1998)  

• Modelling time spent in various states is important in many research contexts. In 
medicine we have survival time, or length of hospital stay. In economics duration of 
employment is of interest. In education students may spend different lengths of time 
on gaining a degree Associated with this are whether they progress satisfactorily or 
not at the end of each year of study, or the ‘state’ they are in a certain length of time 
after the process began. Such ‘event history’ or ‘survival’ processes can often take 
place within more complex structures. For example, individuals (Level 2) repeatedly 
pass through various periods of measurement of employment status (Level 1). 
Students may be measured within a number of different universities. Steele et al 
(2003) discuss a range of models of such situations with examples and show how they 
can be fitted using multilevel procedures. The ESRC project referred to above is also 
addressing such multi-state event history models in tandem with multi-processes. 

• The closely related areas of structural equation modelling, latent variable analysis and 
factor analysis within multilevel structures are also recently receiving close attention, 
e.g., traditional factor analyses of sets of attitudes of students as indicators of 
underlying constructs. Variability in such latent constructs over students may also be 
affected by the multilevel structures in which they are placed.  Details of many new 
developments in these areas are provided by Skrondal and Rabe-Hesketh (2004). 
Muthen (1994) is an early review of these ideas and has also provided specialist 
software MPLUS for multilevel structural equation modelling (Muthen and Muthen 
(2003)). Goldstein and Browne (2002) introduce methods for factor analysis within 
the MCMC estimation procedures of MLwiN. 

• Measurement error is a problem that has received wide attention in the statistical 
theory and methodological literature. It is well known that when statistical models 
contain large components of such error statistical inferences may be misleading unless 
recognised and possibly adjusted for. The same is true of multilevel models. However, 
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the problem is possibly more complex in that such errors can occur at many levels. A 
discussion of multilevel approaches is given by Woodhouse et al (1996). MCMC 
methods are particular useful for models incorporating measurement error, particularly 
where the variables with error have random slopes (Browne et al (2001b). 
Distributions for errors can be incorporated in the simulation framework 

 
• A programme of methodological development for handling missing data in multilevel 

models has been undertaken by the Centre for Multilevel Modelling and others and is 
continuing (the methods for missing response observations considered above is a 
special case). A recent project carried out by James Carpenter under the auspices of 
the ESRC Research Methods Programme has undertaken a wide investigation of this 
topic and has provided an extremely valuable research resource in the website 
www.missingdata.org.uk.  

 
We finally concluded with some caveats expressed in more detail by Goldstein (2003). 
The application of multilevel modelling has already begun to make statistical analysis 
reflect the complexity of much social reality and to yield important new insights in many 
areas. As software is developed and becomes more widely available and user friendly the 
application of multilevel ideas should become more widespread and even routine. This is 
welcome, yet despite their usefulness, multilevel models should never become an 
unthinking panacea. Some researchers even doubt their value at all but naturally this will 
not be our view. The latter cynicism is often based on misconceptions of the nature of 
statistical inference or lack of understanding of the implications of uncertainty. Plewis and 
Fielding (2003) critically discuss some of the issues surrounding this position by some 
researchers. However, it is true that in certain circumstances where there is little structural 
complexity multilevel models may hardly be necessary. Descriptive statistics and 
traditional single level regression summaries may then be adequate for analysis, 
presentation and interpretation. On the other hand multilevel analyses can bring extra and 
necessary insight into the complex matters of explanation and causality. For instance, they 
bring efficient precision into comparisons between universities by utilising in a properly 
specified way what is going on inside them through data on individual students. The 
models are not, however, substitutes for well grounded substantive theory. They may 
though, through grounded empiricism help to evaluate those theories and make a 
contribution to their development. Part of the difficulty may be that by introducing more 
complexity they extend but do not necessarily simplify interpretation. But substantive 
theories are themselves complex and there can be no pretence that simple statistical 
methods, devoid of the need for caveats and detailed interpretation, are always the 
empirical way of cutting through that complexity. Multilevel analysis is a set of tools that 
are becoming invaluable in empirical research but they must be used with care and 
statistical understanding. 
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Appendix 
 

Figure A1: Cross Classification of KS3 Students in Oldham LEA Schools by Ward of 
Residence and School 

 OLDHAM LEA SECONDARY SCHOOLS  

WARD 
CODE 

Wards in 
Oldham 
LEA 

 

A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

G 

 

H 

 

I 

 

J 

 

K 

 

L 

 

M 

 

N 

 

0 

 

TOTALS 

00BPFA 8 1 66 24 1 5 0 5 0 0 3 2 0 17 2 134 

00BPFB 0 1 0 0 0 3 0 1 0 49 32 10 4 3 12 115 

00BPFC 0 2 0 0 0 3 0 0 1 73 8 3 1 1 16 108 

00BPFD 0 0 0 0 0 40 0 4 0 0 46 1 0 10 6 107 

00BPFE 1 86 3 0 1 5 2 1 0 2 26 3 0 3 4 137 

00BPFF 0 0 0 0 0 1 63 0 0 10 1 0 38 0 12 125 

00BPFG 0 0 1 0 5 3 0 69 0 0 1 11 0 10 0 100 

00BPFH 0 0 0 0 2 4 0 64 0 0 2 2 0 13 1 88 

00BPFJ 1 0 7 0 51 6 1 22 0 0 3 0 0 12 0 103 

00BPFK 9 0 5 11 2 2 0 0 33 1 3 5 1 8 2 82 

00BPFL 0 0 0 0 1 1 12 0 0 57 1 3 11 3 29 118 

00BPFM 0 0 0 0 2 2 33 1 0 36 2 2 4 0 24 106 

00BPFN 0 0 0 0 0 0 0 0 88 0 0 17 1 0 0 106 

00BPFP 1 0 0 0 0 0 0 0 88 0 0 20 4 1 2 116 

00BPFQ 57 0 1 0 0 2 6 0 4 1 1 5 2 1 14 94 

00BPFR 27 1 4 68 2 3 14 1 5 1 6 2 0 8 4 146 

00BPFS 1 1 30 2 7 2 0 6 0 0 10 4 1 14 3 81 

00BPFT 0 0 0 0 1 2 62 0 0 1 1 0 34 0 13 114 

00BPFU 85 0 1 9 0 2 1 0 13 0 1 14 5 9 14 154 

00BPFW 0 10 20 2 6 14 0 1 0 0 39 3 0 8 4 107 

Wards 
outside 
Oldham 
LEA  

00BNFC 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

00BNFF 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 

00BNFK 0 0 0 0 1 0 0 5 0 0 0 0 0 0 0 6 

00BNFL 0 0 0 0 0 2 0 0 0 0 1 1 0 0 0 4 

00BNFP 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

00BNFU 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 

00BNFY 0 0 1 0 0 2 0 3 0 0 4 1 0 0 0 11 

00BNGB 0 0 0 0 2 24 0 20 0 0 9 1 1 0 8 65 

00BNGC 0 0 1 0 4 1 0 32 0 0 1 1 0 2 0 42 

00BQFA 0 0 1 0 0 1 3 0 0 2 1 0 14 0 4 26 

00BQFB 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

00BQFC 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 8 
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00BQFE 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 5 

00BQFF 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

00BQFG 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 3 

00BQFH 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

00BQFJ 0 0 0 0 0 1 0 0 0 0 0 1 4 0 0 6 

00BQFK 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 

00BQFL 0 0 0 0 0 1 0 0 0 1 1 1 2 0 0 6 

00BQFM 1 0 0 0 0 0 0 0 0 0 3 0 0 1 0 5 

00BQFN 0 0 0 0 0 1 0 0 0 0 0 7 17 0 0 25 

00BQFP 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

00BQFQ 0 0 0 0 0 0 0 0 0 0 0 4 10 0 1 15 

00BQFR 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 2 

00BQFS 0 0 0 0 0 0 0 0 0 0 0 3 10 0 0 13 

00BQFU 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 

00BQFW 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

00BTFA 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 4 

00BTFB 0 0 1 0 0 0 0 0 0 0 0 2 0 0 1 4 

00BTFC 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

00BTFD 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 4 

00BTFG 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 

00BTFK 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3 

00BTFM 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

00BTFN 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

00BTFP 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

00BTFQ 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 4 

00BTFS 0 0 0 0 0 0 0 0 2 0 0 3 0 1 0 6 

00BTFT 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

00BTFU 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 

00BUFT 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

00CYFR 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

17UHGY 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 

17UHHB 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

30UDHF 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

30UMFR 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

30UMFX 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

TOTAL 191 102 143 116 88 135 198 237 236 234 209 167 184 126 179 2545 
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